Mathematica入门教程之Mathematica的基本语法特征

2011-11-02 13:51:32来源: 互联网
如果你是第一次使用Mathematica,那么以下几点请你一定牢牢记住:

Mathematica中大写小写是有区别的,如Name、name、NAME等是不同的变量名或函数名。

系统所提供的功能大部分以系统函数的形式给出,内部函数一般写全称,而且一定是以大写英文字母开头,如Sin[x],Conjugate[z]等。

乘法即可以用*,又可以用空格表示,如2 3=2*3=6 ,x y,2 Sin[x]等;乘幂可以用“^”表示,如x^0.5,Tan[x]^y。

自定义的变量可以取几乎任意的名称,长度不限,但不可以数字开头。

当你赋予变量任何一个值,除非你明显地改变该值或使用Clear[变量名]或“变量名=.”取消该值为止,它将始终保持原值不变。

一定要注意四种括号的用法:()圆括号表示项的结合顺序,如(x+(y^x+1/(2x)));[]方括号表示函数,如Log[x],BesselJ[x,1];{}大括号表示一个“表”(一组数字、任意表达式、函数等的集合),如{2x,Sin[12 Pi],{1+A,y*x}};[[]]双方括号表示“表”或“表达式”的下标,如a[[2,3]]、{1,2,3}[[1]]=1。

Mathematica的语句书写十分方便,一个语句可以分为多行写,同一行可以写多个语句(但要以分号间隔)。当语句以分号结束时,语句计算后不做输出(输出语句除外),否则将输出计算的结果。

一.数的表示及计算                                                      

1.在Mathematica中你不必考虑数的精确度,因为除非你指定输出精度,Mathematica总会以绝对精确的形式输出结果。例如:你输入

In[1]:=378/123,系统会输出Out[1]:=126/41,如果想得到近似解,则应输入

In[2]:=N[378/123,5],即求其5位有效数字的数值解,系统会输出Out[2]:=3.073

2,另外Mathematica还可以根据你前面使用的数字的精度自动地设定精度。

  Mathematica与众不同之处还在于它可以处理任意大、任意小及任意位精度的数值,如100^7000,2^(-2000)等数值可以很快地求出,但在其他语言或系统中这是不可想象的,你不妨试一试N[Pi,1000]。

Mathematica还定义了一些系统常数,如上面提到的Pi(圆周率的精确值),还有E(自然对数的底数)、I(复数单位),Degree(角度一度,Pi/180),Infinity(无穷大)等,不要小看这些简单的符号,它们包含的信息远远大于我们所熟知的它们的近似值,它们的精度也是无限的。

 

二.“表”及其用法

“表”是Mathematica中一个相当有用的数据类型,它即可以作为数组,又可以作为矩阵;除此以外,你可以把任意一组表达式用一个或一组{}括起来,进行运算、存储。可以说表是任意对象的一个集合。它可以动态地分配内存,可以方便地进行插入、删除、排序、翻转等等几乎所有可以想象到的操作。

  如果你建立了一个表,你可以通过下表操作符[[]](双方括号)来访问它的每一个元素,如我们定义table={2,Pi,Sin[x],{aaa,A*I}}为一个表,那么table[[1]]就为2,table[[2]]就是Pi,而table[[3,1]]表示嵌套在table中的子表{aaa,A*I}的第一个元素即aaa,table[[3,2]]表示{aaa,A*I}第二个元素即A*I。总之,表每一层次上并列的部分用逗号分割,表可以无穷嵌套。

你可以通过Append[表,表达式]或Prepend[表,表达式]把表达式添加到表的最前面或最后面,如Append[{1,2,3},a]表示{1,2,3,a}。你还可以通过Union[表1,表2,......],Jion[表1,表2,......]来把几个表合并为一个表,二者不同在于Union在合并时删除了各表中重复的元素,而后者仅是简单的合并;你还可以使用Flatten[表]把表中所有子表"抹平"合并成一个表,而Patition[表,整数n]把表按每n个元素分段作为子表,集合成的表。如Flatten[{1,2,{Sin[x],dog},{{y}}}]表示{1,2,Sin[x],y},而Partition[{1,2,Sin[x],y},2]把表每两个分段,结果为{{1,2},{Sin[x],y}};还可以通过Delete[表,位置]、Insert[表,位置]来向表中按位置插入或删除元素,如要删除上面提到的table中的aaa,你可以用Delete[table,{3,1}]来实现;Sort[表]给出了表中各元素的大小顺序,Reverse[表]、RotateLeft[表,整数n]、RotateRight[表,整数n]可以分别将一个表进行翻转、左转n个元素、右转n个元素等操作,Length[表]给出了表第一个层次上的元素个数,Position[表,表达式]给出了表中出现该表达式的位置,Count[表,表达式]则给出表达式出现的次数。各种表的操作函数还有很多,这里就不再一一介绍了。

 

三.图形函数

Mathematica的图形函数十分丰富,用寥寥几句就可以画出复杂的图形,而且可以通过变量和文件存储和显示图形,具有极大的灵活性。

  图形函数中最有代表性的函数为Plot[表达式,{变量,下限,上限},可选项],(其中表达式还可以是一个"表达式表",这样可以在一个图里画多个函数);变量为自变量;上限和下限确定了作图的范围;可选项可要可不要,不写系统会按默认值作图,它表示对作图的具体要求。例如Plot[Sin[x],{x,0,2*Pi},AspectRatio-1]表示在0

.二维函数作图

Plot[函数f,{x,xmin,xmax},选项]

在区间{x,xmin,xmax}上,按选项的要求画出函数f的图形

Plot[{函数1,函数2},{x,xmin,xmax},选项]

在区间{x,xmin,xmax}上,按选项的要求画出几个函数的图形    

图一.用Plot生成x*Sin[1/x]的图形

  

.二维参数画图函数

ParametricPlot[{x[t],y[t]},{t,t0,t1},选项] 画一个X轴,Y轴坐标为{x[t],y[t]},参变量t在[t0,t1]中的参数曲线

图二.用ParametricPlot生成的图形

 

 

.三维函数作图

Plot3D[f[x,y],{x,x0,x1},{y,y0,y1},选项]

在区域上,画出空间曲面f[x,y].

 

图3.用Plot3D生成的Sin[x]*Cos[y]的三维图形

 

除Plot,二维参数方程作图的ParametricPlot[{x(t),y(t)},{t,下限,上限},可选项]、三维作图的Plot3D[二维函数表达式,{变量1,下限,上限}, {变量2,下限,上限},可选项}]、三维参数方程作图的ParametricPlot3D[{x(u,v),y(u,v),z(u,v)},{u,下限,上限},{v,下限,上限},可选项]外,还有画二维等高线图ContourPlot[二元表达式,{变量1,下限,上限}, {变量2,下限,上限},可选项}]、画二维密度图的DensityPlot[二元表达式,{变量1,下限,上限}, {变量2,下限,上限},可选项}]等等不一而足。  

  除使用上述函数作图以外,Mathematica还可以象其他语言一样使用图形元语言作图,如画点函数Point[x,y],画线函数Line[x1,y1,x2,y2],画圆的Circle[x,y,r],画矩形和多边形的Rectangle和Polygon,字符输出的Text[字符串,输出坐标],还有颜色函数RGBColor[red,green,blue]、Hue[],GrayLevel[gray]来描述颜色的亮度、灰度、饱和度,用PointSize[相对尺度]、Thickness[相对尺度]来表示点和线的宽度。总之Mathematica可以精确地调节图形的每一个特征。

四.数学函数的用法

Mathematica系统内核提供了丰富的数学计算的函数,包括极限、积分、微分、最值、极值、统计、规划等数学的各个领域,复杂的数学问题简化为对函数的调用,极大地提高了解决问题的效率。  

  Mathematica提供了所有的三角、反三角、双曲、反双曲、各种特殊函数(如贝塞尔函数系、椭圆函数等),各种复数函数(如Im[z],Re[z],Conjugate[z], Abs[z],Arg[z]),各种随机函数(如Random[n]可以通过不同的参数产生任意范围内整型、实型任意分布的随机数),矩阵运算函数(如求特征值特征向量的EigenVector[],EigenValue[],求逆的Inverse[]等)。  

  Mathematica还提供了大量数学操作的函数,如取极限的Limit[f[x],{x,a}],求微分的D[f[x],x],全微分的Dt[f[x],x],不定积分的Integrate[f[x],x]和定积分的Integrate[f[x],{x,a,b}],解任意方程的Solve[lhs=rhs,x]及微分方程的DSolve[lhs=rhs,x],解幂级数和付立叶展开的Series[f[x]],Fourier[f[x]]及其逆变化InverseSeries,InverseFourier, 求和函数Sum[],求积函数Product[],以上函数均可以适用于多维函数或多维方程。  

  Mathematica中还有相当数量的数值计算函数,最常用的是N[表达式,整数]可以求出表达式精确到指定有效数字的数值解,还有如数值求积分的NIntegrate[],求方程数值根的NSolve[]和NDSolve[],最小、最大值的NFindMinimum[]和NFindMaximum[]等等。  

Mathematica还有各种表达式操作的函数,如取分子、分母的 Numerator[expr] , Denormator[expr],取系数的Coefficient[expr],因式分解的Factor[expr],以及展开的Expand[expr]和ExpandAll[expr],表达式化简的Simplify[expr]等。expr代表一个任意的表达式。

. 求极限

计算函数极限的一般形式是:

Limit[expr,x->x0] x->x0时函数的极限

Limit[expr,x->x0,Direction->-1] x->时函数的极限

Limit[expr,x->x0, Direction->1] x->时函数的极限

In[1]:= 

Out[1]:=1

. 微商和微分

在Mathematica中能方便地计算任何函数表达式的任意阶微商(导数).如果f是一元函数,D[f,x]表示;如果f是多元函数,D[f,x]表示.微商函数的常用形式如下:

D[f,x] 

 

 

In[1]:=D[x^x,x]

Out[1]:=

下面列出全微分函数Dt的常用形式及其意

[1] [2]

关键字:Mathematica  入门教程

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2011/1102/article_12819.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
Mathematica
入门教程

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved