用于无线鼠标的无接触供电电路

2011-10-13 11:47:23来源: 互联网

目前广泛使用的无线鼠标采用电池供电。更换电池给用户带来不便。在此给出一种适用于无线鼠标无接触供电(Contact-less Power Transfer,CPT)电路,它包括无接触供电初级电路和次级电路2部分。供电装置采用USB供电,电压为5 V,通过自激振荡电路产生138 kHz左右的高频振荡电压,经鼠标垫内置的无接触耦合初级载流线圈L31输出。无线鼠标内置次级载流线圈L32,它采用无接触感应耦合方式获取电能,再由MC34063集成稳压芯片构成BUCK稳压电路,负载电压为3.1V。

1 无接触供电电路原理
    图1为无接触供电电路原理图。分裂电感L21,L22和功率开关管Q1,Q2构成自激推挽式变换器电路,每一个开关管的控制电压分别取自另外一个开关管的两端电压。


1.1 无接触供电电路工作原理
    理想状态下,2个开关管的参数相同。初始时刻,开关管Q1,Q2都处在关断状态。当电路接通时,电源电压同时作用于开关管的控制端,使它们同时导通。由于实际电路元件参数并不完全相同,2个开关管两端的电压不相等,如Q1的端电压较低,则Q2的控制电压较低,使Q2的端电压更高,从而使Q1的控制电压更高,使Q1的端电压更低,这样就形成了正反馈,最后Q2完全关断,而Q1完全导通。随着谐振电容C3两端电压的改变,2个开关管在电压过零时交替导通和断开,系统自动运行在ZVS模式下。
    L31,L32组成无接触耦合变压器,其中C3,C4为初、次级补偿电容,初级变换器和初级载流线圈L31属于固定不动部分;次级感应线圈、次级变换器和负载为可移动部分。初、次级之间不存在电气连接。
    D1,D2和C5,C6构成升压整流电路,经L4,C7滤波后由稳压芯片MC34063构成BUCK稳压电路。
    通过数学分析建立系统模型,并用PSpiee,Proteus软件进行相关仿真分析,得到无接触电能传输设计方案。
1.2 无接触耦合变压器工作原理
    如图2所示,次级线圈的负载近似为纯阻性负载RL。初级线圈的电流为c.JPG,两端电压为d.JPG,次级电流为g.JPG为初级电流c.JPG在次级的感应电压值,f.JPG为次级电流e.JPG在初级线圈的感应电压值。根据图2中给出的电路的方向,可得初级、次级回路的方程为。

 



    
    根据式(3),式(4),次级线圈L32等效为一个电流源。其中ω2M2/Z32称为次级反映阻抗,它是次级的回路阻抗通过互感反映到初级的等效阻抗。反映阻抗表示次级电路负载对初级电流的影响,直接反映了系统的功率传输能力。

 

1.3 次级电路分析
    D1,D2和C5,C6构成升压整流电路。次级线圈L32等效为电流源电路,次级电流e.JPG近似为正弦波。通过PSpice仿真分析,采用升压整流电路与全波整流电路相比,在额定负载条件下,无接触耦合变压器初级载流线圈L31电压峰值提高32%,带负载能力增加3倍多。
    在整个电路设计中G容量的选择至关重要。次级电容补偿电感产生的功率因数降低问题,其容量过大则次级带负载能力降低。
    为了简化分析,将G及后边的电路等效为一个电阻R、一个电容C和一个电感L并联等效,将次级载流线圈L32用一个电流源IS等效替代,则得到简化的次级等效电路如图3(a)所示。
    根据这个等效电路,得到KCL方程:
    j.JPG
    则负载电流IR和电容C的关系可用下式表示:
    

 

式中:ω表示振荡频率;Voc表示电流源IS的开路电压。根据式(6)可绘制出负载电流IR和电容C的关系曲线如图3(b)所示。

 


    可以看出当电容接近谐振点,负载电流最大,也即输出功率最大。

2 实验结果
    设计输入电压Uin=5 V,Uo=3.1 V的无接触供电电路如图4所示,负载为无线鼠标电路,测试负载范围为60~273 mW。满输出负载为91 mA,273 mW,电路效率为52%,工作频率f=138 kHz。实验证明电路可行。



3 结语
    通过理论分析建立了无接触耦合变压器模型。采用了升压整流电路,克服了低电压条件下无接触耦合次级线圈电压低的缺陷,电路具有ZVS软开关特性。经理论分析,该电路带负载能力最大可达到350 mW。由于无接触次级载流线圈L32近似为电流源,当负载增加时输出电压也随之减少,电路具备过电流自动保护功能,不需额外提供过流保护电路

关键字:无线鼠标  无接触  供电

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2011/1013/article_12233.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
无线鼠标
无接触
供电

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved