MOS管短沟道效应及其行为建模

2011-08-16 21:03:26来源: 互联网
1 引 言

  目前,实现微电路最常用的技术是使用MOS晶体管。随着科学技术的发展,集成电路的集成密度不断地在提高,MOS晶体管器件的尺寸也逐年缩小, 当MOS管的沟道长度小到一定值之后,出现的短沟道效应将对器件的特性产生影响,使其偏离传统长沟道MOS管的特性

  VHDL2AMS(Analog andMixed Signal)是一种高层次的混合信号硬件描述语言,它不仅支持对模拟系统的建模和仿真,而且支持对离散系统及数字模拟混合系统的建模和仿真。它对电路系统的描述既可以采用结构描述,也可以采用行为描述,即只需要描述模型的行为,而不需要声明模型是如何实现的。

  2 工作原理

  当MOS管沟道缩短到一定程度,就会出现短沟道效应,其主要表现在MOS管沟道中的载流子出现速度饱和现象。在MOS管沟道较长、电场较小的情况下,载流子的速度正比于电场,即载流子的迁移率是个常数。然而在沟道电场强度很高情况下,载流子的速度将由于散射效应而趋于饱和。载流子速度v与电场的关系可用以下关系式来近似:

  

 

  其中μn 是迁移率, E是沟道水平方向的电场, Ec是速度饱和发生时的临界电场。沟道水平方向的电场取决于UDS /L,对于短沟道MOS管,由于沟道长度L 比长沟道MOS管小得多,因此水平方向的电场也相应大得多,随着漏源电压UDS的增加,很快就可以达到饱和点。因此在分析MOS管特性时,考虑到速度饱和效应,就不能沿用传统长沟道MOS管的电流、电压关系式,需要对其加以修正。

  在线性区,漏极电流的公式原来为

  

 

  其中ID 为漏极电流, kp 为跨导系数,W 为沟道宽度, L 为沟道长度, UT 为阈值电压, UGS和UDS分别是极电压和漏极电压。

  对于短沟道MOS管,应该修正为

  

 

  其中, K (UDS ) 因子考虑了速度饱和的因素。K(U)定义为:

  

 

  UDS /L 可以理解为沟道中水平方向的平均电场,对于长沟道MOS管,由于L 较大, UDS /L 比Ec 小得多,因此K (UDS ) 接近于1, 而对于短沟道MOS 管,K (UDS )通常小于1,因此产生的漏极电流要比通常电流公式计算的值要小。在饱和区,漏极电流的公式原来为

  

 

  

 

  其中, K (UGS - UT )因子考虑了速度饱和的因素。在(UGS - UT ) /LEc 比1大得多的情况下, ID 与(UGS -UT )不再是长沟道MOS管中的平方关系,而接近于线性关系。

3 基于VHDL 2AM S的MOS管建模

  N沟道MOS管模型如图1 所示[ 6, 7 ] , VHDL2AMS既可以针对其结构进行结构描述,也可以对其进行行为描述,即通过一些数学表达式或传递函数来描述对象的行为。下面用VHDL2AMS构建短沟道MOS管行为。

  

 

  短沟道MOS管行为模型中,库和程序包的调用以及接口参数定义如下:

  

 

  在ieee库中,程序包electrical_ systems中定义了电子系统中电压、电流、电源地等基本电路变量,程序包fundamental_constants中定义了电子电荷、波耳兹曼等一些基本常数,math_real程序包则定义了各种数学运算符等。VHDL2AMS在接口定义中列出了MOS管模型中的有关参数,可以方便地进行设置和修改。由于MOS管的VHDL2AMS模型占有较大篇幅,以下仅给出短沟道MOS管VHDL2AMS模型中与前面内容相关的关键程序语句。

  

 

  以上程序中, k为增益因子

  k = kpW /Lk_uds = = 1. 0 / (1. 0 + uds/ ( Ec3 L) ) 对应于前述K (UDS )项; k_udssat = = 1. 0 / (1. 0 + ( ugs2u th ) /(Ec3 L) ) 对应于前述K (UGS - UT )项。可以看出,在截止区,漏极电流几乎为零,在线性区和饱和区,漏极电流表达式分别包含k _uds和k_udssat因子,反映了

  短沟道效应。此外漏极电流表达式还包含( 1. 0 +lambda3 uds)项,其中lambda为沟道长度调制系数,反映漏极电压对沟道长度的影响。

   4 分析与比较

  利用混合信号仿真器SMASH5. 5, 得到VHDL2

  

 

  AMS描述的MOS管模型的仿真结果,如图2所示。图中分别给出两个MOS管的ID2UDS特性。两个管子是具有相同W /L 比的N沟道MOS管,各项参数基本相同,比如开启电压UT 均为0. 5 V,主要差别在于一个是长沟道(L = 10μm) MOS管, 一个是短沟道(L =0. 2μm)MOS管。上面一条特性是长沟道MOS管特性,下面一条特性是短沟道MOS管特性。从图中可看出,长沟道MOS管特性曲线在UDS =UGS - UT = 2 - 0. 5 = 1. 5V处饱和,符合常理。而短沟道MOS管曲线则在UDS远低于1. 5V处就已经提前饱和。通过观察可以发现饱和点约为0. 5V。因此短沟道MOS管的饱和区域要比长沟道MOS管更宽。

  此外同在饱和区,如当UDS = 2V时,可以看到短沟道MOS管的漏极电流只是长沟道MOS管漏极电流的1 /3左右。这意味着短沟道MOS管的电流驱动能力明显下降。

  5 结 论

  对于如今的深亚微米工艺,传统的长沟道MOS管模型已经不再适用。由于速度饱和因素的影响,使得短沟道MOS管在达到UGS2UT 之前已经达到饱和状态,因此短沟道MOS管经历的饱和范围更大。短沟道MOS管的VHDL2AMS行为模型仿真结果很好地揭示了这一结论。

关键字:mos管  短沟道效应  沟道效应  效应

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2011/0816/article_11384.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
mos管
短沟道效应
沟道效应
效应

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved