拉普拉斯变换

2011-07-17 15:08:21来源: 互联网 关键字:变换

电路分析中,如果将换路时刻作为时间的起点,那么我们只需研究后的电路变量,这样就可以将函数限定在的区间。这就相当于将函数乘上了单位阶跃函数,即:

乘以一个衰减因子,选择适当的,使得在区间内绝对可积,则它的傅里叶变换为:

     (式9-1-1)

(式9-1-1)的积分下限取为,令,则积分结果是S的函数,将(式9-1-1)写为:

     (式9-1-2)

(式9-1-2)中的s称为复频率。对于一个时间函数,由(式9-1-2)就可得到一个,通常将称为原函数,将称为象函数。

进行傅里叶变换,有:

上式两边同乘,得:

     (式9-1-3)

(式9-1-2)、(式9-1-3)是一对拉普拉斯变换式,(式9-1-2)为拉普拉斯正变换,(式9-1-3)为拉普拉斯反变换,常用手写体“L”表示拉普拉斯变换,记为:

如果时间函数满足:

(1)时,

(2)时,都分段连续,在有限区间内至多存在有限个间断点;

(3)是指数阶函数,即存在常数,使,从而使积分有限,其中,则的拉普拉斯变换存在。电路中常见函数一般都是指数阶函数。

 

下面按拉普拉斯变换的定义式(式9-1-2)导出一些常用函数的象函数。

一、指数函数

这里应有

时,成为单位阶跃函数,于是拉氏变换,记为:

时,可得:

二、单位冲激函数

式中利用了的筛分性质,即:

一些常用函数的拉普拉斯变换式详见表9-1-1。

 

表9-1-1  一些常用函数的拉普拉斯变换

1

n为正整数)

n为正整数)

a

关键字:变换

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2011/0717/article_10638.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:拉普拉斯变换的基本定理
下一篇:二阶电路的零输入响应

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利
推荐阅读
全部
变换

小广播

独家专题更多

东芝在线展会——芯科技智社会创未来
东芝在线展会——芯科技智社会创未来
2017东芝PCIM在线展会
2017东芝PCIM在线展会
TI车载信息娱乐系统的音视频解决方案
TI车载信息娱乐系统的音视频解决方案
汇总了TI汽车信息娱乐系统方案、优质音频解决方案、汽车娱乐系统和仪表盘参考设计相关的文档、视频等资源
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2017 EEWORLD.com.cn, Inc. All rights reserved