拉普拉斯变换的基本定理

2011-07-17 15:07:24来源: 互联网

本节介绍拉普拉斯变换(也称为拉氏变换)的基本性质,了解掌握了这些性质,可以更加方便地求解各种拉普拉斯正反变换。

一、线性定理

  则:

   (式9-2-1)

式中为常系数。

例9-2-1  求的拉氏变换。

解:

同理:

二、微分定理

设  ,则:

  (式9-2-1)

同理可推广得到的高阶导数的拉氏变换式:

例9-2-2:

已知,求

解:由于,由(式9-2-2)得:

同理:

三、积分定理

,则:

    (式9-2-3)

 

例9-2-3 求

解:斜坡函数是单位阶跃函数的积分,由(式9-2-3)得:

四、时域位移(延时)定理

,则:

 (式9-2-4)

例9-2-4:求图9-2-1所示函数的拉普拉斯变换式。

解:由图可知:

五、复频域位移定理

,则:

   (式9-2-5)

 

例9-2-5:已知

求:的拉普拉斯反变换。

解:利用复频域位移定理:

六、卷积定理:

,则:

  (式9-2-6)  

例9-2-6.求的拉普拉斯反变换式。

解:已知,利用卷积定理得:

  

同理可推得:

七、初值定理

,则

例9-2-7.设,验证初值定理。

解:

又:

 ,所以,得证!

八、终值定理:

,则

例9-2-8.仍设,验证终值定理。

解:

,又

所以,得证!

注意:利用终值定理求的前提条件是必须存在,且是唯一确定的值。

关键字:拉普拉斯  拉普拉斯变换  普拉斯  变换

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2011/0717/article_10637.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
拉普拉斯
拉普拉斯变换
普拉斯
变换

小广播

独家专题更多

迎接创新的黄金时代 无创想,不奇迹
迎接创新的黄金时代 无创想,不奇迹
​TE工程师帮助将不可能变成可能,通过技术突破,使世界更加清洁、安全和美好。
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved