金属-氧化物-半导体场效应管

2011-07-12 20:03:54来源: 互联网
金属-氧化物-半导体场效应管

结型场效应管的输入电阻虽然可达106~109W,但在要求输入电阻更高的场合,还是不能满足要求。而且,由于它的输入电阻是PN结的反偏电阻,在高温条件下工作时,PN结反向电流增大,反偏电阻的阻值明显下降。与结型场效应管不同,金属-氧化物-半导体场效应管(MOSFET)的极与半导体之间隔有二氧化硅(SiO2)绝缘介质,使栅极处于绝缘状态(故又称绝缘栅场效应管),因而它的输入电阻可高达1015W。它的另一个优点是制造工艺简单,适于制造大规模及超大规模集成电路。

MOS管也有N沟道和P沟道之分,而且每一类又分为增强型和耗尽型两种,二者的区别是增强型MOS管在栅-源电压vGS=0时,漏-源极之间没有导电沟道存在,即使加上电压vDS(在一定的数值范围内),也没有漏极电流产生(iD=0)。而耗尽型MOS管在vGS=0时,漏-源极间就有导电沟道存在。

4.3.1 N沟道增强型场效应管

一、结构

a) N沟道增强型MOS管结构示意图

(b) N沟道增强型MOS管代表符号    (c) P沟道增强型MOS管代表符号

在一块掺杂浓度较低的P型硅衬底上,用光刻、扩散工艺制作两个高掺杂浓度的N+区,并用金属铝引出两个电极,分别作漏极d和源极s。然后在半导体表面复盖一层很薄的二氧化硅(SiO2)绝缘层,在漏-源极间的绝缘层上再装上一个铝电极,作为栅极g。另外在衬底上也引出一个电极B,这就构成了一个N沟道增强型MOS管。显然它的栅极与其它电极间是绝缘的。图 1(a)、(b)分别是它的结构示意图和代表符号。代表符号中的箭头方向表示由P(衬底)指向N(沟道)。P沟道增强型MOS管的箭头方向与上述相反,如图 1(c)所示。

二、工作原理

1.vGS对iD及沟道的控制作用

MOS管的源极和衬底通常是接在一起的(大多数管子在出厂前已连接好)。从图1(a)可以看出,增强型MOS管的漏极d和源极s之间有两个背靠背的PN结。当栅-源电压vGS=0时,即使加上漏-源电压vDS,而且不论vDS的极性如何,总有一个PN结处于反偏状态,漏-源极间没有导电沟道,所以这时漏极电流iD≈0。

若在栅-源极间加上正向电压,即vGS>0,则栅极和衬底之间的SiO2绝缘层中便产生一个垂直于半导体表面的由栅极指向衬底的电场,这个电场能排斥空穴而吸引电子,因而使栅极附近的P型衬底中的空穴被排斥,剩下不能移动的受主离子(负离子),形成耗尽层,同时P衬底中的电子(少子)被吸引到衬底表面。当vGS数值较小,吸引电子的能力不强时,漏-源极之间仍无导电沟道出现,如图1(b)所示。vGS增加时,吸引到P衬底表面层的电子就增多,当vGS达到某一数值时,这些电子在栅极附近的P衬底表面便形成一个N型薄层,且与两个N+区相连通,在漏-源极间形成N型导电沟道,其导电类型与P衬底相反,故又称为反型层,如图1(c)所示。vGS越大,作用于半导体表面的电场就越强,吸引到P衬底表面的电子就越多,导电沟道越厚,沟道电阻越小。我们把开始形成沟道时的栅-源极电压称为开启电压,用VT表示。

由上述分析可知,N沟道增强型MOS管在vGS<VT时,不能形成导电沟道,管子处于截止状态。只有当vGS≥VT时,才有沟道形成,此时在漏-源极间加上正向电压vDS,才有漏极电流产生。而且vGS增大时,沟道变厚,沟道电阻减小,iD增大。这种必须在vGS≥VT时才能形成导电沟道的MOS管称为增强型MOS管。

2.vDS对iD的影响

图1

如图2(a)所示,当vGS>VT且为一确定值时,漏-源电压vDS对导电沟道及电流iD的影响与结型场效应管相似。漏极电流iD沿沟道产生的电压降使沟道内各点与栅极间的电压不再相等,靠近源极一端的电压最大,这里沟道最厚,而漏极一端电压最小,其值为vGD=vGS - vDS,因而这里沟道最薄。但当vDS较小(vDS

随着vDS的增大,靠近漏极的沟道越来越薄,当vDS增加到使vGD=vGS-vDS=VT(或vDS=vGS-VT)时,沟道在漏极一端出现预夹断,如图2(b)所示。再继续增大vDS,夹断点将向源极方向移动,如图2(c)所示。由于vDS的增加部分几乎全部降落在夹断区,故iD几乎不随vDS增大而增加,管子进入饱和区,iD几乎仅由vGS决定。

三、特性曲线、电流方程及参数

1.特性曲线和电流方程

图1

N沟道增强型MOS管的输出特性曲线如图1(a)所示。与结型场效应管一样,其输出特性曲线也可分为可变电阻区、饱和区、截止区和击穿区几部分。转移特性曲线如图1(b)所示,由于场效应管作放大器件使用时是工作在饱和区(恒流区),此时iD几乎不随vDS而变化,即不同的vDS所对应的转移特性曲线几乎是重合的,所以可用vDS大于某一数值(vDS>vGS-VT)后的一条转移特性曲线代替饱和区的所有转移特性曲线,与结型场效应管相类似。在饱和区内,iD与vGS的近似关系式为

 

                                                 ( vGS>VT )   

式中IDO是vGS=2VT时的漏极电流iD。

2. 参数

MOS管的主要参数与结型场效应管基本相同,只是增强型MOS管中不用夹断电压VP,而用开启电压VT表征管子的特性。

4.3.2 N沟道耗尽型场效应管

图1

     
表  1
结构种类 工作方式 符   号 电压极性 转移特性
iD = f (vGS)
输出特性
iD = f (vDS)
VP或VT VDS
N沟道
MOSFET


(-) (+)


(+) (+)
P沟道
MOSFET


(+) (-)


(-) (-)
P沟道
JFET


(+) (-)
N沟道
JFET


(-) (+)
P沟道
GaAs
MESFET


(-) (+)

关键字:半导体

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2011/0712/article_10540.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
半导体

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved