LED照明的电源拓扑结构

2011-05-29 11:09:33来源: 互联网 关键字:led  照明  电源  拓扑结构

本文对 LED 特性及驱动 LED 时需要权衡的因素作了概述,并对适用于驱动 LED 和进行 LED 调光的各种开关电源拓扑进行了详 尽的讨论,此外还详细说明了这些电源的相关优点。

引言


 

随着 LED 的生产成本下降,其使用愈发普遍,所涵盖的应用范围从手持终端设备到车载,再到建筑照明。LED 的高可靠性(使用 寿命超过 50,000 个小时)、较高的效率(>120 流明/瓦)以及近乎瞬时的响应能力使其成为极具吸引力的光源。与白炽灯泡 200mS 的 响应时间相比,LED 会在短短 5nS 响应时间内发光。因此,目前它们已在汽车行业的刹车灯中得到广泛采用。

驱动 LED


 

驱动 LED 并非没有挑战。可调的亮度需要用恒定电流来驱动 LED,并且无论输入电压如何都必须要保持该电流的恒定。这与仅 仅将白炽灯泡连接到电池来为其供电相比更具有挑战性。

LED 具有类似于二极管的正向 V-I 特性。在低于 LED 开启阈值(白光 LED 的开启电压阈值大约为 3.5V)时,通经该 LED 的电流非 常小。在高于该阈值时,电流会以正向电压形式成指数倍递增。这就允许将 LED 定型为带有一个串联电阻的电压源,其中带有一则 警示说明:本模型仅在单一的工作 DC 电流下才有效。如果 LED 中的 DC 电流发生改变,那么该模型的电阻也应随即改变,以反映新 的工作电流。在大的正向电流下,LED 中的功率耗散会使设备发热,此举将改变正向压降和动态阻抗。在确定 LED 阻抗时充分考虑 散热环境是非常重要的。

当通过降压稳压器驱动 LED 时,LED 常常会根据所选的输出滤波器排列来传导电感的 AC 纹波电流和 DC 电流。这不仅会提高 LED 中电流的 RMS 振幅,而且还会增大其功耗。这样就可提高结温并对 LED 的使用寿命产生重要影响。如果我们设定一个 70% 的 光输出限制作为 LED 的使用寿命,那么 LED 的寿命就会从 74 摄氏度度下的 15,000 小时延长到 63 摄氏度度下的 40,000 小时。LED 的功率损耗由 LED 电阻乘以 RMS 电流的平方再加上平均电流乘以正向压降来确定。由于结温可通过平均功耗来确定,因此即使是 较大的纹波电流对功耗产生的影响也不大。例如,在降压转换器中,等于 DC 输出电流 (Ipk-pk = Iout) 的峰至峰纹波电流会增加不超 过 10% 的总功率损耗。如果远远超过上面的损耗水平,那么就需要降低来自电源的 AC 纹波电流以便使结温和工作寿命保持不变。 一条非常有用的经验法则是结温每降低 10 摄氏度,半导体寿命就会提高两倍。实际上,由于电感器的抑制作用,因此大多数设计就 趋向于更低的纹波电流。此外,LED 中的峰值电流不应超过厂商所规定的最大安全工作电流额定值。

拓扑选择


 

表 1 中所显示的信息有助于为 LED 驱动器选择最佳的开关拓扑。除这些拓扑之外,您还可使用简易的限流电阻器或线性稳压器 来驱动 LED,但是此类方法通常会浪费过多功率。所有相关的设计参数包括输入电压范围、驱动的 LED 数量、LED 电流、隔离、EMI 抑制以及效率。大多数的 LED 驱动电路都属于下列拓扑类型:降压型、升压型、降压-升压型、SEPIC 和反激式拓扑。

表 1 备选的 LED 电源拓扑

拓扑结构 输入电压 (Vin) 总大于输出电压(Vout) 输入电压 (Vin) 总小于输出电压(Vout) 输入电压 (Vin)<输出电压 (Vout) 和输入电压 (Vin)>输出电压(Vout) 隔离式
降压拓扑      
升压拓扑      
降压-升压拓扑      
降压或升压拓扑      
Sepic 拓扑    
反激式拓扑

图 1 显示了三种基本的电源拓扑示例。第一个示意图所显示的降压稳压器适用于输出电压总小于输入电压的情形。在图 1 中, 降压稳压器会通过改变 MOSFET 的开启时间来控制电流进入 LED。电流感应可通过测量电阻器两端的电压获得,其中该电阻器应与 LED 串联。对该方法来说,重要的设计难题是如何驱动 MOSFET。从性价比的角度来说,推荐使用需要浮动栅极驱动的 N 通道场效 应晶体管 (FET)。这需要一个驱动变压器或浮动驱动电路(其可用于维持内部电压高于输入电压)。

图 1 还显示了备选的降压稳压器 (buck #2)。在此电路中,MOSFET 对接地进行驱动,从而大大降低了驱动电路要求。该电路可选 择通过监测 FET 电流或与 LED 串联的电流感应电阻来感应 LED 电流。后者需要一个电平移位电路来获得电源接地的信息,但这会 使简单的设计复杂化。另外,图 1 中还显示了一个升压转换器,该转换器可在输出电压总是大于输入电压时使用。由于 MOSFET 对 接地进行驱动并且电流感应电阻也采用接地参考,因此此类拓扑设计起来就很容易。该电路的一个不足之处是在短路期间,通过电 感器的电流会毫无限制。您可以通过保险丝或电子断路器的形式来增加故障保护。此外,某些更为复杂的拓扑也可提供此类保护。

图 1 简单的降压和升压型拓扑为 LED 供电

图2显示了两款降压-升压型电路,该电路可在输入电压和输出电压相比时高时低时使用。两者具有相同的折衷特性(其中折衷可 在有关电流感应电阻和栅极驱动位置的两个降压型拓扑中显现)。图 2 中的降压-升压型拓扑显示了一个接地参考的栅极驱动。它需 要一个电平移位的电流感应信号,但是该反向降压-升压型电路具有一个接地参考的电流感应和电平移位的栅极驱动。如果控制 IC 与负输出有关,并且电流感应电阻和 LED 可交换,那么该反向降压-升压型电路就能以非常有用的方式进行配置。适当的控制 IC,就 能直接测量输出电流,并且 MOSFET 也可被直接驱动。

图 2 降压-升压型拓扑可调节大于或小于 Vout 的输入电压

该降压-升压方法的一个缺陷是电流相当高。例如,当输入和输出电压相同时,电感和电源开关电流则为输出电流的两倍。这会 对效率和功耗产生负面的影响。在许多情况下,图 3 中的“降压或升压型”拓扑将缓和这些问题。在该电路中,降压功率级之后是一个 升压。如果输入电压高于输出电压,则在升压级刚好通电时,降压级会进行电压调节。如果输入电压小于输出电压,则升压级会进行 调节而降压级则通电。通常要为升压和降压操作预留一些重叠,因此从一个模型转到另一模型时就不存在静带。

当输入和输出电压几乎相等时,该电路的好处是开关和电感器电流也近乎等同于输出电流。电感纹波电流也趋向于变小。即使 该电路中有四个电源开关,通常效率也会得到显著的提高,在电池应用中这一点至关重要。图 3 中还显示了 SEPIC 拓扑,此类拓扑 要求较少的 FET,但需要更多的无源组件。其好处是简单的接地参考 FET 驱动器和控制电路。此外,可将双电感组合到单一的耦合 电感中,从而节省空间和成本。但是像降压-升压拓扑一样,它具有比“降压或升压”和脉动输出电流更高的开关电流,这就要求电容 器可通过更大的 RMS 电流。

图 3 降压或升压型以及 SEPIC 拓扑提供了更高的效率

出于安全考虑,可能规定在离线电压和输出电压之间使用隔离。在此应用中,最具性价比的解决方案是反激式转换器(请参见图 4)。它要求所有隔离拓扑的组件数最少。变压器匝比可设计为降压、升压或降压-升压输出电压,这样就提供了极大的设计灵活性。 但其缺点是电源变压器通常为定制组件。此外,在 FET 以及输入和输出电容器中存在很高的组件应力。在稳定照明应用中,可通过 使用一个“慢速”反馈控制环路(可调节与输入电压同相的 LED 电流)来实现功率因数校正 (PFC) 功能。通过调节所需的平均 LED 电 流以及与输入电压同相的输入电流,即可获得较高的功率因数

图 4 反激式转换器可提供隔离和功率因数校正功能

调光技术


 

需要对 LED 进行调光是一件很平常的事。例如,可能需要调节显示屏或调节建筑灯的亮度。实现此操作的方式有两种:即降低 LED 电流或快速打开 LED 再关闭,然后使眼睛最终得到平衡。因为光输出并非完全与电流呈线性关系,因此降低电流的方法效率最 低。此外,LED 色谱通常会在电流低于额定值时发生改变。请记住:人对亮度的感知成指数倍增,因此调光就需要电流出现更大的百 分比变动。因为在全电流下,3% 的调节误差由于电路容差缘故可在 10% 的负载下放大成 30% 甚至更大的误差,因此这会对电路设 计产生重大的影响。尽管存在响应速度问题,但通过脉宽调制 (PWM) 来调节电流仍更为精确。当照明和显示时,需要 100Hz 以上的 PWM 才能使人眼不会察觉到闪烁。10% 的脉冲宽度处于毫秒范围内,并且要求电源具有高于 10 kHz 以上的带宽。

结论


 

如表 2 所示,在许多应用中使用 LED 正变得日益普遍。它将会采用各种电源拓扑来为这些应用提供支持。通常,输入电压、输出 电压和隔离需求将规定正确的选择。在输入电压与输出电压相比总是时高时低时,采用降压或升压可能是显而易见的选择。但是, 当输入和输出电压的关系并非如此受抑制时,该选择就变的更加困难,需要权衡许多因素,其中包括效率、成本和可靠性。

表 2 许多 LED 应用都规定了多种电源拓扑

拓扑结构 典型应用
降压拓扑 车载、标牌、投影仪、建筑
升压拓扑 车载、LCD 背光、手电筒(闪光灯)
降压升压、降压或升压、Sepic 拓扑 医疗、车载照明灯;手电筒(闪光灯)、紧急照明灯、标牌
建筑照明 车载、LCD 背光、手电筒(闪光灯)

关键字:led  照明  电源  拓扑结构

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2011/0529/article_9273.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:影响开关模式、DC-DC转换器效率的主要因
下一篇:多媒体处理器动态电源管理技术

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利
推荐阅读
全部
led
照明
电源
拓扑结构

小广播

独家专题更多

东芝在线展会——芯科技智社会创未来
东芝在线展会——芯科技智社会创未来
2017东芝PCIM在线展会
2017东芝PCIM在线展会
TI车载信息娱乐系统的音视频解决方案
TI车载信息娱乐系统的音视频解决方案
汇总了TI汽车信息娱乐系统方案、优质音频解决方案、汽车娱乐系统和仪表盘参考设计相关的文档、视频等资源
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2017 EEWORLD.com.cn, Inc. All rights reserved