CCFL推挽式缓冲电路

2011-05-28 08:09:04来源: 互联网 关键字:ccfl  推挽  缓冲  缓冲电路
摘要:DS3984, DS3988, DS3881, DS3882, DS3992和DS3994为冷阴极荧光灯(CCFL)控制器,它们使用推挽结构来产生驱动荧光灯所需的高压交流波形。在推挽式驱动器中,升压变压器的寄生电感与n沟道功率MOSFET的寄生输出电容组成了一个谐振回路,能产生不期望的尖峰电压。高压尖峰会增加功率MOSFET承受的应力,同时也会增大系统产生的电磁干扰(EMI)。本应用笔记描述了如何用一个简单的电阻-电容(RC)网络来抑制该尖峰电压。

无抑制时的漏极电压

图1详细列出了使用15V直流电源工作时,推挽式驱动器的典型栅极驱动电压和漏极电压波形。在推挽式驱动结构中,当互补MOSFET开启时,正常情况下漏极电压会升至直流电源电压的两倍(或者本例中的30V)。然而,如图1所示,尖峰电压却高达54V。在MOSFET关闭以及互补MOSFET开启时,n通道功率MOSFET的漏极也会出现尖峰电压。


图1. 无缓冲电路时的漏极电压

可抑制漏极尖峰电压的电路及设计

可以通过为每个漏极添加简单的RC网络来抑制尖峰电压,如图2所示。合适的电阻(R)和电容(C)值可由如下过程确定。在阐述该过程之后,将有一个实例演示如何降低图1所示的尖峰电压。


图2. 推挽驱动器的漏极缓冲电路

确定合适的缓冲电路RC值:

  1. 测量尖峰谐振频率。见图3所示实例。
  2. 在MOSFET的漏极和源极上并联一个电容(无电阻,仅电容),调整电容值,直到尖峰谐振频率降低到原来的二分之一。此时,该电容值为产生尖峰电压的寄生电容值的三倍。
  3. 因为寄生电容值已知,寄生电感值可用如下等式求得:
    L = 1 / [(2πF)² x C],其中,F=谐振频率,C = 寄生电容值
  4. 现在,寄生电容和电感值都已知,谐振回路的特征阻抗可由如下等式求得:
    Z = SQRT(L/C),其中,L = 寄生电感值,C = 寄生电容值
  5. RC缓冲电路中的电阻值应该接近特征阻抗,电容值应该是寄生电容值的四到十倍。使用更大的电容可以轻微降低电压过冲,但要以更多的功率耗散和更低的逆变效率为代价。

计算RC缓冲器元件值

在这部分,使用前面提到的五个步骤,可以计算出组成缓冲电路、用来降低图1中尖峰电压的适当电阻电容值。
  1. 找出谐振尖峰电压的频率。图3显示出它大约为35MHz。


    图3. 无缓冲电路的谐振尖峰电压的频率

  2. 在漏极和地线之间并联一个电容,以将谐振频率降至大约一半(17.5MHz)。如图4所示,330pF的并联电容即可将谐振频率降低至大约17.5MHz。最佳电容值可以通过尝试并联不同容量的电容来确定。最好从小容量电容开始(比如100pF),然后逐渐增大。

    因为330pF的并联电容即可将谐振频率降至原来的二分之一,寄生电容值应该是其三分之一(大约110pF)。


    图4. 提供330pF并联电容时的谐振尖峰电压频率

  3. 计算寄生电感值。
    寄生电感 = L = 1 / [(2 x 3.14 x 35MHz)² * 110pF] = 0.188µH

  4. 计算特征阻抗。
    特征阻抗 = Z = SQRT (0.188µH / 110pF) = 41

  5. 选择适当的电阻和电容值。缓冲电路中的电阻值R应该接近41Ω,而电容值C应该在寄生电容110pF的四到十倍之间。在本例中,我们选择电容C为1000pF,大约为寄生电容值的九倍。

    图5显示了加入由39Ω电阻及1000pF电容组成的缓冲电路后的结果。


    图5. 加入RC缓冲电路(39Ω,1000pF)后的漏极电压

结论

本应用笔记说明,通过一些简单的经验测量,即可确定推挽式驱动结构中阻容缓冲电路的适当值。该缓冲电路可以大大降低功率MOSFET漏极不期望出现的尖峰电压。

 

关键字:ccfl  推挽  缓冲  缓冲电路

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2011/0528/article_9231.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:简单电力场效应管驱动器是孤立的和DC耦合-Simp
下一篇:修改MAX2010电路使其工作在450MHz

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利
推荐阅读
全部
ccfl
推挽
缓冲
缓冲电路

小广播

独家专题更多

TI车载信息娱乐系统的音视频解决方案
TI车载信息娱乐系统的音视频解决方案
汇总了TI汽车信息娱乐系统方案、优质音频解决方案、汽车娱乐系统和仪表盘参考设计相关的文档、视频等资源
迎接创新的黄金时代 无创想,不奇迹
迎接创新的黄金时代 无创想,不奇迹
​TE工程师帮助将不可能变成可能,通过技术突破,使世界更加清洁、安全和美好。
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2017 EEWORLD.com.cn, Inc. All rights reserved