单级功率因数校正(PFC)研究的新进展

2011-05-21 08:29:20来源: 互联网

1  引言

    由二极管和滤波电容组成的整流电路,被大量用作电子设备的前端电源。由于电路的非线性,这类电源的输入电流并不是正弦的,包含大量谐波,而且功率因数较低。因此,有必要对这类电源的输入电流进行波形整定(Input Current Shaping,ICS),对其功率因数进行校正。

    近几年来,PFC技术已得到大量研究,有了许多实现方案。其中较成熟的是两级式PFC变换器。两级式PFC对谐波的处理效果较好,可以达到较高的功率因数;具有独立的PFC级,可以对输入DC/DC级的直流电压进行预调节,输出电压比较精确;带载能力比较高,适合于功率较高的场合。但是,它所需的元器件较多,成本较高;功率密度低,损耗比较大;尤其对于中小功率的电子设备,很不经济。因此,将PFC功能与DC/DC功能融为一体的单级式PFC应运而生,以弥补两级PFC的不足。

    目前,单级式PFC已成为研究的重点和热点。许多新的电源技术被应用到单级式PFC拓扑中。本文对这些新的单级式PFC的拓扑结构特点作分类总结,分析了各自的优缺点,并提出了单级PFC的发展方向。

2   单级式PFC变换器的基本要求  

    图1(a)为典型3端式单级PFC的电路框图,图1(b)则为相应的基本电路。

(a)三端式单级PFC电路框图

(b)基本的单级PFC变换器电路

图1  单级PFC电路

    从图1(b)可以看到,典型的单级PFC变换器是由Boost变换器与基本的功率变换器合成的。两部分共用一个开关管,其中D1电路是充电电路,D2是放电电路(同时防止开关管关断时电流倒流)。由于控制电路只是完成输出电压整定的任务,因此要求变换电路本身具有自然的PFC功能。而Boost变换器恰恰具有这种内在的功率因数校正能力。

    从图1(a)可以看到,典型的PFC变换器是直接与交流电路相连的,因此,瞬时输入功率是随时变化的,要得到稳定的功率输出,储能电容CB是必需的功率平衡手段。但由于整流后的输入电压同负载大小无关,因此负载越轻,积累在CB上的不平衡能量就越多。这导致CB上的电压应力很大,对器件耐压的要求很高。

    基于典型单级PFC的上述特点,在开发新结构的单级PFC电路时,应尽可能满足以下几个方面的要求:

    1)变换器电路要有较好的谐波处理能力,可以满足各种标准的要求;

    2)变换器要有较好的稳定输出电压能力;

    3)变换器的电路拓扑应具有降低电压应力、减少电路损耗的能力;

    4)开关管的控制方式应达到较好的校正、输出效果。

    根据以上要求,下面对一些新的单级PFC拓扑电路进行了分类总结。

3  新型的单级PFC变换器拓扑结构

    许多新型的单级PFC变换器拓扑结构,基本都是在典型单级PFC的基础上,围绕着减少器件的电压应力,降低电路的损耗而进行的改进。下面对这类改进措施及技术分类作一介绍。

3.1  基本电路的改进

    实际中常在图1(b)的D1、D2两条二极管电路中加入电感线圈等元件,以减少电路的电压应力。这种改进很多,图2(a)是一个典型例子(类似改进见参考文献[2]等)。它是在图1(b)的D1、D2两条电路中加入负反馈线圈W1、W2而获得的。在电路开通或关断的时候,两线圈提供负反馈电压,减轻了储能电容CB的电压应力,延缓了输入电流的变化。这种方法还有利于输入电感工作在CCM(Continuous Current Mode)模式,保持较低的谐波含量。

(a)单级PFC变换器电路拓扑

(b)双端式单级PFC电路框图

图2  改进的单级PFC变换电路

    在实际应用中,还常用到如图2(b)所示的双端式单级PFC电路。它与三端式单级PFC电路类似,但充、放电电路的连接方法与三端式有差别。实际上,双端式单级PFC电路往往与三端式PFC有相对应的关系,两类电路的工作原理、以及所要实现的目标是基本一致的,两者间的相互转化关系见参考文献[2]。

3.2  与其它变换器电路的结合

    PFC技术发展至今已经逐渐融入到许多优秀的变换器电路中。这些新的拓扑结构可以很好地抑制电源输入谐波,整定输入电流波形,同时又具有极好的输出特性。充分发挥了PFC电路和功率变换电路的特点。

    根据图1中单级PFC变换器的原理,我们可以将Boost电路与其它功率变换器结合在一起。图3将Boost电路与全桥变换器合成单级PFC电路。实际应用中可参照文献[2]的方法,对Dx1、Dx2的充放电电路进行改进,可以得到更好的效果。该电路可以实现对输入电流波形的整定,同时又可以工作在较大功率场合,发挥了全桥电路的特点。同样,PFC电路还可以与其它电路结合,能收到很好的效果。

图3  单级全桥PFC变换器

3.3  有源钳位和软开关技术的应用

    与普通DC/DC变换器相比,单级式PFC变换器具有电压应力大、损耗大的缺点。因此,人们又将有源钳位和软开关等技术应用到单级式PFC变换器当中,使主、辅开关在软开关条件下开关,减少损耗,或降低电路的电压应力,从而使单级式PFC变换器电路能够得到实际应用。

    图4中,有源钳位电路由S2、Cc构成。主开关S1关断后,Cr充电,当Vcr被充电到Cc的电压Vc时,辅助开关S2导通,则S1的电压被钳位在Vc,降低了S1的电压应力。

图4  带有源钳位和软开关的Boost单级隔离式PFC变换器

    软开关过程则由谐振电感Lr、寄生电容Cr的谐振来实现。为了实现零电压开关,必须适当选择Lr,且要求Lr远小于励磁电感Lm。Lr越大,越容易满足主开关的ZVS(Zero Voltage Switching)条件,但Lr的增大会增加开关管S1、S2的电压应力,带来更多的占空比丢失;而Lr越小,输出二极管VD3的电流下降率diD3/dt就会越大,带来严重的反向恢复问题。

3.4  单级并联PFC电路

    针对传统两级式PFC电路的缺点,单级PFC变换器把PFC级与DC/DC功率转换级整合在一起,达到了减少器件数量、简化控制电路、提高功率密度的目的,并力图使整个变换器电路具有较高的效率、较好的输出稳定性。但在单级电路中,由于单个开关管须同时实现PFC功能和输出电压整定功能,因此,其效率、输出等性能都逊色于两极式PFC变换器。针对这一问题,又产生了新的并联式PFC电路。与两级式电路及普通单级电路相比,这种电路的效率较高,输出特性也比较好。

    图5(a)是基本的并联式PFC变换器原理图。在一个周期中,PFC级无需处理所有的传输功率,这是并联式PFC的基本特征。

(a)  基本的并联式PFC变换器

(b)  单级并联式PFC变换器

图5  并联式PFC变换器

    对于图5(a)的并联PFC变换器,其输入输出的功率关系如图6(a)所示。在t0-t1时刻,Pin>Po,功率P1经主电路传输到输出侧,无需经过PFC级,多输入的功率Pin-Po积累在储能电容中。在t1-t2时刻,Pin    图5(a)的并联PFC变换器,其主电路、辅助PFC电路各需要一个变压器,结构比较复杂,体积、重量较大,成本也比较高,因此常用于较大功率的场合。在中、小功率场合,常用图5(b)的单级并联PFC变换器。该电路中,主电路、辅助电路被整合在一起,输入功率Pin和32%的功率差额都由同一功率级进行处理。图6(b)是单级并联PFC电路的概念图。

(a) 基本并联式输入输出功率关系

(b) 单级并联输入输出功率概念图

图6  并联PFC变换器输入输出功率关系

    图7则是一个实际的反激式单级并联PFC变换器电路。图中输入电感Lin、变压器激磁电感Lm、附加线圈N2完成图6(b)中受控电压源的功能。实验证明:该电路输入电流平均值与负载电流反馈有关,随负载电流变化,这种自身具有的负载电流反馈的性质,可以使电路在轻载时不需要减少占空比就可以降低输入功率;另外,这种电路不会增加开关管的电流应力,并可以减少储能电容的电压应力以及其它有源器件的电路应力。

图7  单级反激式并联PFC电路

4  结语

    近些年来,对单级式PFC变换器电路的大量研究,基本上都是围绕着本文所述的四个目标进行的。由于单级式PFC变换器电路有着先天的缺点,减少其电压应力、降低损耗就有着格外重要的意义,本文提到的三类拓扑方面的改进,都是针对这一目标来进行的。当然,对一个变换器而言控制也有着格外重要的作用,最近,许多与数字控制技术相结合的单级PFC变换器已成为研究的热点。一个优秀的PFC变换器必然是好的拓扑和好的控制技术的结合。今后,围绕着本文中的几个目标,新的单级PFC拓扑及控制策略将不断地被提出。所有这些研究必将推动单级式PFC变换器的应用。

关键字:两级功率因数校正  单级功率因数校正  单级并联功率因数校正  拓扑

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2011/0521/article_8888.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
两级功率因数校正
单级功率因数校正
单级并联功率因数校正
拓扑

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved