TOPSwitch?FX系列单片开关电源的原理与应用

2011-05-20 00:09:03来源: 互联网
TOPSwitch?FX系列是美国PowerIntegrations公司继TOPSwitch、TOPSwitch?Ⅱ之后,在2000年初推出的第三代单片开关电源产品。它不仅设计先进,功能完善,而且外围电路简单,使用非常灵活,“FX”即有灵活(flexible)之意。TOPSwitch?FX配外围电路后,能实现多种控制功能,其中包括配微控制器(MCU)或通过局域网(LAN)遥控开关电源通/断的功能。是目前设计75W以下高效率、多功能、单路或多路输出反激式开关电源的最佳选择。此外,该系列产品还可构成PC机的待机电源(StandbySupply)、机顶盒电源(Set?topBoxPowerSupply)、电源适配器、由微控制器控制的开关电源。

1性能特点及管脚功能

1.1性能特点

(1)该系列产品除具备TOPSwitch?Ⅱ系列的全部优点之外,还增加了软起动、外部设定极限电流、过压关断、欠压保护、过热滞后关断、遥控、同步等功能;

(2)只需改变开关频率选择端和多功能端的外部接线,即可实现14种控制功能:全频工作方式,半频工作方式,同时实现过压和欠压保护,仅过压保护,仅欠压保护,从外部设定极限电流,控制开关电源通/断等;

(3)增加了外部可编程设定极限电流ILIMIT及频率抖动功能,不仅使用方便,还能有效抑制高次谐波干扰;

(4)当开关电源的负载减轻时,它采取跳过周期的方式来降低占空比,使输出电压保持稳定。即使空载时也不用接假负载。

1.2管脚功能

TOPSwitch?FX系列包括TOP232P/G/Y、TOP233P/G/Y、TOP234P/G/Y共9种型号,尾缀P、G、Y分别表示DIP?8、SMD?8、TO?220?7B封装。其最大输出功率为75W。其中,TO?220?7B封装有5个引出端,它们分别是控制端C,多功能端M,源极S,开关频率选择端F,漏极D。DIP?8和SMD?8封装没有F端,等效于四端器件。多功能端主要有6种功能:

(1)线路过压(OV)保护;

(2)线路欠压(UV)保护;

(3)利用线路电压前馈来降低空比Dmax;

(4)从外部设定芯片的极限电流I′LIMIT;

(5)遥控(亦称远程通/断);

(6)外同步。

将开关频率选择端接源极时,开关频率f=130kHz;接控制端时,开关频率变成f/2=65kHz。若将M、F端均接S极,TOPSwitch?FX即工作在三端模式下,与TOPSwitch?Ⅱ相似。

2TOPSwitch?FX的工作原理

TOPSwitch?FX的内部框图如图1所示。主要由15部分组成:

(1)控制电压源(由控制电压UC向并联调整器和门驱动级提供偏压,而控制端电流IC则能调节占空比);

(2)带隙基准电压源(给内部提供各种基准电压);

(3)频率抖动振荡器(产生锯齿波SAW,时钟信号CLK和最大占空比信号Dmax);

(4)并联调整器/误差放大器;

(5)脉宽调制器(含PWM比较器和触发器,通过改变控制端电流IC的大小,连续调节脉冲占空比);

(6)过流保护电路

(7)门驱动级和输出级(内含耐压为700V的功

率开关管MOSFET);

(8)具有滞后特性的过热保护电路(当芯片结温

Tj>135℃时关断输出级;当Tj<70℃时芯片才恢复正常工作);

(9)关断/自动重起动电路(当调节失控时,立即使芯片在低占空比下工作。倘若故障已排除,就自动重新起动电源恢复正常工作);

(10)高压电流源(提供偏流用);

(11)软起动电路;

(12)欠压比较器;

(13)电流极限比较器;

(14)线路比较器;

(15)多功能端的内部电路。

TOPSwitch?FX的工作原理是利用反馈电流IC来调节占空比D,达到稳压目的。举例说明,当输出电压UO↑时,经过光耦反馈电路使得IC↑→D↓→UO↓,最终使UO不变。

2.1频率抖动振荡器及开关频率的设定

所谓频率抖动特性是指把开关频率调制在很窄频段内,以降低与基本开关频率的各次谐波相关的电磁干扰的幅度。TOPSwitch?FX的内部振荡器增加了“频率抖动”功能。当基本开关频率f1=130kHz时,开关频率就以250次/s的速率在±4kHz的频段内抖动,实际开关频率f2=f1±△f1=(130±4)kHz=(126~134)kHz。由于f2是在窄范围内偏移的可变频率,因此能有效抑制由130kHz基频及其高次谐波所产生的干扰。谐波次数愈高,频率抖动的优点愈显著。例如,用此法可将开关频率的5次谐波噪声的平均值衰减10dB以上。选择半频工作方式时,基本开关频率为65kHz,抖动范围是±2kHz,实际开关频率f2=(63~67)kHz。

2.2脉宽调制器与最大占空比

当控制端电流IC在规定范围内,而多功能端的输入电流IM为定值时,脉宽调制器的输出占空比D与IC成反比。PWM的增益为

K=△D/△IC=-22%/mA

实际上,占空比不仅与IC有关,还取决于IM值,这是它与TOPSwitch?Ⅱ的重要区别之一。

2.3跳过周期与最小占空比

如果开关电源的负载非常轻,以至于开关电源在最小占空比(Dmin=1.5%)之下所提供的输出功率,仍然超过负载上的功耗,TOPSwitch?FX就采用跳过周期的工作方式进一步降低输出功率,来提高轻载电压的稳定性。根据负载变化情况,开关电源能在正常工作和跳过周期方式二者之间自动转换,而无须其他控制。如不需要跳过周期,可在电源输出端接上最小负载RLmin,使D>Dmin=1.5%。

2.4内部极限电流与外部可编程极限电流

TOPSwitch?FX的漏极极限电流,既可由内部设定,亦可从外部设定。这是它与TOPSwitch?Ⅱ的另一显著区别。其内部自保护极限电流值见表1。TOPSwitch?FX在每个开关周期内都要检测MOSFET漏-源极导通电阻RDS(ON)上的漏极峰值电流ID(PK)。当ID(PK)>ILIMIT时,过流比较器就输出高电平,依次经过触发器、主控门和驱动级,将MOSFET关断,起到过流保护作用。为方便用户使用,也可从外部通过改变多功能端的流出电流IM(用负值表示,单位是μA),来设定极限电流I′LIMIT值。I′LIMIT的设定范围是(40%~100%)·ILIMIT。令KI=I′LIMIT/ILIMIT,KI表示极限电流的衰减因数,它与IM的关系曲线如图2所示。使用时只需在M?S极之间接一只极限电流设定电阻RIL,通过改变RIL的阻值来调节IM的大小,即可从外部设定I′LIMIT值。以TOP233Y为例,其ILIMIT=1.00A(典型值)。当RIL=25kΩ时,I′LIMIT=40%·ILIMIT=0.4A。当RIL=6.7kΩ时,I′LIMIT=100%ILIMIT=1.0A。显然,每改变一次RIL的阻值,就重新设定一次I′LIMIT值,这就是“可编程”的真正含义。

表1内部自保护极限电流值

TOPSwitch?FX系列产品型号 TOP232 TOP233 TOP234
自保护极限电流值 典型值:ILIMIT(A) 0.500 1.000 1.500
最小值:ILIMIT(min)(A) 0.465 0.930 1.395
最大值:ILIMIT(max)(A) 0.535 1.070 1.605
2.5遥控及外同步

通过控制流入(或流出)多功能端的电流IM,就能接通或关断TOPSwitch?FX。这样很容易用几种不同方式来遥控TOPSwitch?FX。例如将通/断信号(ON/OFF)经过晶体管或光耦合器加到M?S极之间,即可起动或关断开关电源。这种遥控方式不仅损耗小、电路成本低,而且能省掉机械开关,并可利用微处理器控制导通与关断脉冲。在喷墨打印机和激光打印机中常采用这种控制方法。

用ON激活方式控制开关电源通/断的电路如图3所示。通/断控制信号(ON/OFF)通过NPN型晶体管VT接M端,亦可用光耦合器或手动开关来代替晶体管。当ON/OFF=1(高电平)时,VT导通,M端呈低电位。此时UC>UM,控制端就有电流经内部电路流入M端且不会出现欠压或过压状态(即IUV3TOPSwitch?FX的典型应用

3.1多路输出的35W机顶盒开关电源

机顶盒是互交式电视(ITV)的关键技术,利用它可提供数字广播电视、视频与音乐点播、卡拉OK、三维游戏、高速上网、在线购物、语音提示等功能强大的宽带多媒体服务。具有五路输出的35W机顶盒开关电源电路如图4所示。这五路电压分别为:UO1(+30V、100mA),UO2(+18V、550mA),UO3(+5V、2.5A),UO4(+3.3V、3A),UO5(-5V、100mA)。其中,+5V和+3.3V作为主输出,其余各路均为辅输出。当交流输入电压UI=220VAC±15%时,总输出功率达38.5W;若采用宽范围电压输入(UI=85~265VAC),总输出功率就降成25W。该电源采用3片IC:TOP233Y(IC1);线性光耦合器LTV817A(IC2);可调式精密并联稳压器TL431C(IC3)。为减小高频变压器体积和增强磁场耦合程度,次级绕组采用了堆叠式绕法。由R4和C14构成的吸收电路可降低射频噪声对电视机等视频设备的干扰。必要时还可将开关频率选择端(F)改接控制端(C),选择半频方式以进一步降低电视机对视频噪声的敏感程度。

图1TOPSwitch?FX的内部框图

图2KI与IM的关系曲线

图3控制开关电源通/断电路

图4多路输出的35W机顶盒开关电源电路

图5由MCU控制的TOPSwitch?FZ单片开关电源

R6、R7和R8为比例反馈电阻,使5V和3.3V电源按照一定的比例进行反馈,这两路输出的负载调整率均可达±5%。R9和C16构成TL431C的频率补偿网络。C17为软起动电容,取C17=22μF时可增加4ms的软起动时间,再加上本身已有10ms的软起动时间,总共为14ms。其余各路输出未加反馈,输出电压均由高频变压器的匝数比来确定。因-5V电源的输出功率很低,现通过电阻R2和稳压管VDZ2进行电压调节。R9是+30V输出的假负载,它能降低该路的空载及轻载电压。鉴于5V、3.3V和18V电源的输出功率较大,三者都增加了后级LC滤波器(L3和C9、L4和C11、L2和C7),以减小输出纹波电压。

TOP233Y具有频率抖动特性,这对降低电磁干扰很有帮助;再合理地选择安全电容C15和EMI滤波器(C6、L1)的元件值,就能使开关电源产生的电磁辐射达到CISPR2(FCCB)国际标准。将C15的一端接UI的正极,能把TOP233Y的共模干扰减至最小。需要指出,C15和C6都称作安全电容,区别只是C15接在高压与地之间,能滤除初、次级耦合电容产生的共模干扰,在IEC950国际标准中称之为“Y电容”。C6则接在交流电源进线端,专门滤除电网线之间的串模干扰,被称作“X电容”。为承受可能从电网线窜入的雷击电压,在交流输入端还并联一只标称电压U1mA=275V的压敏电阻器VSR。U1mA表示当压敏电阻器上通过1mA的直流电流时元件两端的电压值。

3.2由MCU控制的TOPSwitch?FX单片开关电源

利用微控制器可对由TOPSwitch?FX构成的喷墨打印机、激光打印机等计算机外部设备中的开关电源进行控制,电路如图5所示。开关电源部分主要由TOPSwitch?FX(IC1)、光耦合器(IC2)组成。控制电路则包括微控制器(MCU)、两片LTV817A线性光耦合器(IC3、IC4)、按钮开关SB。仅当按下SB时产生的信号才有效,抬起时信号不起作用。SB上不需要加防抖动电路,这是因为开关电源的软起动时间(约10ms)和MCU的复位及初始化时间能起到延迟作用,可以避开按下SB时产生抖动干扰的时间;并且仅当开关被按下至少达到上述时间,才能通过MCU接通开关电源。这就要求必须将SB按到底,而不要轻轻点击一下,以确保电源起动。MCU完成复位及初始化后检测到IC3发来的开机信号,再通过IC4去锁定开关电源。光耦IC3、IC4中的LED发光管和光敏三极管,分别用LED3和VT3、LED4和VT4表示。现将LED3接在控制端与SB上端之间,VT3接在MCU的逻辑输入端。常态下LED3上无电流通过,IC3不工作。MCU的逻辑输出端经过隔离二极管VD6和电阻R4接LED4的正极。VT4则接在M、S端之间。因M端本身具有限流功能,故VT4不需要另加限流电阻。CM为多功能端的消噪电容。

当用户首次按下SB时,VD4导通,M端经VD4与S极接通,TOPSwitch?FX即工作在三端模式,多功能端(M)和开关频率设定端(F)不起作用,此时LED3上有电流通过,VT3就给MCU发出起动信号。若最初开关电源是处于关断状态(M端悬空)则首次按下SB时就接通电源,+5V输出电压UCC为MCU提供工作电源电压。MCU接收到起动信号后就令VT4导通,使开关电源保持在接通状态,能够正常输出。当用户再次按下SB时就发出关断信号,MCU接收到信号后就执行关断程序,将喷墨打印机的打印头停在安全位置上。一旦执行完关断程序,MCU就令VT4截止,将M端悬空,开关电源进入关断模式,此时TOPSwitch?FX处于低功耗状态,当UI=230VAC时芯片功耗仅为160mW。假如用作DVD中的开关电源时,关断程序还能把数据和设定状态一并存入E2PROM中,即使掉电后也不致于丢失。

关键字:系列  原理  应用

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2011/0520/article_8780.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
系列
原理
应用

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved