实现电池反接保护的电路, Circuit Provides

2011-05-19 23:55:03来源: 互联网 关键字:实现  电池

A universal problem in battery-operated devices is the threat of damage when an end user (never an engineer) inserts the battery backward. You can avoid damage by inserting a single diode or by using a diode-bridge configuration, but those fixes waste power and reduce the supply voltage by adding one or two diode drops between the battery and the supply rail. An alternative solution not only protects against battery-reversal damage but also automatically corrects the reversal (see the figure below). To eliminate the voltage drops associated with discrete diodes, a low-on-resistance, DPDT (double-pole/double-throw) switch serves as a full-wave rectifier. When you insert the battery with the correct polarity as shown, the upper switch, S1, is in its normally closed state, because its control pin is in its low state. The resulting connection from pin 2 to pin 10 provides a low-impedance path from the battery to the VCC terminal. Conversely, the lower switch, S2, closes its normally open terminal (not as shown), because its control pin is in its high state. The resulting path from pin 7 to pin 6 connects the battery's negative terminal to ground.

The ESD-protection diodes in IC1 guarantee startup and act as a full-wave rectifier. MOSFETs internal to the analog switch turn on when the battery voltage exceeds 1V. Their less-than-20-nsec turn-on time enables the circuit to maintain normal operation by quickly swapping the leads of a reversed-polarity battery connection. The circuit resistance depends on the battery voltage. When the circuit operates from four NiCd, NiMH, or alkaline cells, the resistance in each leg of the rectifier is 2.5Ω (5Ω total). Operation with a two-cell battery (2.4V to 3V) yields a total resistance of 10Ω. IC1 is rated for operation to 5.5V with 30-mA continuous current, making the circuit useful for cordless phones, portable audio equipment, hand-held electronics, and other light- to medium-current applications. IC1's miniature 10-pin µMAX package takes less space than four through-hole signal diodes and is almost as small as two SOT-23 dual signal diodes.


Figure 1. This circuit senses battery polarity and then quickly connects the load or swaps the battery leads.

关键字:实现  电池

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2011/0519/article_8763.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:利用光电耦合器将高端电流检测器的工作电压扩
下一篇:可处理76V电压的断路器,Circuit Breaker H

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利
推荐阅读
全部
实现
电池

小广播

独家专题更多

TI车载信息娱乐系统的音视频解决方案
TI车载信息娱乐系统的音视频解决方案
汇总了TI汽车信息娱乐系统方案、优质音频解决方案、汽车娱乐系统和仪表盘参考设计相关的文档、视频等资源
迎接创新的黄金时代 无创想,不奇迹
迎接创新的黄金时代 无创想,不奇迹
​TE工程师帮助将不可能变成可能,通过技术突破,使世界更加清洁、安全和美好。
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2017 EEWORLD.com.cn, Inc. All rights reserved