在线式UPS的原理分析

2011-05-18 13:11:39来源: 互联网

1在线式UPS工作原理

  电路结构如图3-1所示,输入滤波器实质上就是EMI滤波器,一方面滤除、隔离市电对UPS系统的干扰,另一方面也避免UPS内部的高频开关信号“污染”市电。

  在线式UPS不论是由市电还是由蓄电池供电,其输出功率总是由逆变器提供。市电中断或送电时,无任何转换时间。

  平时,市电经整流器变成直流,然后再由逆变器将直流转换成纯净的正弦电压供给负载。另一路,市电经整流后对蓄电池进行充电。正常供电时的工作原理见图3-1(a)。

gcl1.gif (6658 bytes)

图3-1(a)正常供电时在线式UPS工作原理示意图

  一旦市电中断时,转为蓄电池供电,经逆变器把直流转变为正弦交流供给负载。市电中断时的工作原理见图3-1(b)。

gcl2.gif (6611 bytes)

图3-1(b)市电中断时在线式UPS工作原理示意图

gcl3.gif (6675 bytes)

 

图3-1(c)市电正常而逆变器故障时的工作原理示意图

  在市电正常供电状态下,若逆变器出现故障,则静态开关动作转向由市电直接供电,此时的工作原理见图3-1(c)。

 

  如果静态开关的转换是由于逆变器故障引起,UPS会发出报警信号;如果是由于过载引起,当过载消失后,静态开关重新切换回到逆变器输出端。

2在线式UPS充电电路

  虽然后备式UPS中的恒压充电电路具有电路简单、成本低廉等优点。但这种充电电路使蓄电池组初期充电电流较大,影响蓄电池的寿命。所以在在线式UPS中一般采用分级充电电路,即在充电初期采用恒流充电,当蓄电池端电压达到其浮充电压后,再采用恒压充电。在线式UPS蓄电池的典型充电特性如图3-2所示。

114-3-2.gif (2962 bytes)

图3-2在线式UPS蓄电池理想充电过程

114-3-3.gif (8408 bytes)

图3-3 小型在线式UPS充电电路

  图3-3所示为某小型在线式UPS的充电电路,该电路的工作原理如下:

  变压器将市电电压由220V降到110V,经整流滤波后变成140V的直流电压U1,这个电压分成两路:一路由R1降压和V1、V2稳压后,得到18V左右的电压U2,加到集成控制器(UC3842)的7端,作为该控制器的辅助电源;另一路经电感L1后加到场效应管V3的漏极。V3工作在开关状态,是个提升式(BOOST)开关稳压器,当UC3842的6端输出一正脉冲方波时,V3导通,电压U1几乎都降在电压L1上,通过L1的电流等于漏极电流ID,当正脉冲方波过去后,在该脉冲的后沿激起一个反电势电压  式中:Δu为瞬时反电势电压,Δt为脉冲下降时间。

  这个反电势电压的方向正好与整流电压U1相叠加,经过二极管V4的充电电压UO为:

UO=U1+Δu

  这样,蓄电池就得到了足够的充电电压,因为Δt和ΔID由电路参数决定,该充电电压是固定不变的。随着电池组的充电,当其端电压提高到设定值后,再经R7送到RP及R5组成的分压器上,经分压后的反馈信号送到UC3842的输入端2,经过该信号的控制,使6端输入脉冲的频率降低,这样一来充电电压的平均值比原来减小,于是充电的电压被稳定下来。

  电流的控制过程是这样的:电流的采样信号是由V3源极上的R10取得的,当充电电流增大时,由于对应频率的增加,V3开关频率增加,在R10上通过电流所造成的电压平均值增大,这个增大了的电压US经R11、C6平滑后送到UC3842的3端,使6端输出脉冲的频率下降,从而也稳定了电流。

  由上述可见,这个充电电路实际上是个具有限流稳压功能的开关电源,只要将额定电压、浮充电压、恒流充电电流设置恰当,就能使蓄电池的充电过程基本上沿着理想的充电曲线进行,从而延长蓄电池的使用寿命。

3在线式UPS逆变器

3.1逆变器控制技术——正弦脉宽调制

  正弦脉宽调制是根据能量等效原理发展起来的一种脉宽调制法,如图3-4所示。

  为了得到接近正弦波的脉宽调制波形,我们将正弦波的一个周期在时间上划分成N等份(N是偶数),每一等份的脉宽都是2π/N。在每个特定的时间间隔中,可以用一个脉冲幅度都等于UΔm、脉宽与其对应的正弦波所包含的面积相等或成比例的矩形电压脉冲来分别代替相应的正弦波部分。这样的N个宽度不等的脉冲就组成了一个与正弦波等效的脉宽调制波形。假设正弦波的幅值为U~m,等效矩形波的幅值为UΔm,则各等效矩形脉冲波的宽度为δ式中:

  βi是各时间间隔分段的中心角,也就是各等效脉冲的位置中心角。上面的公式表明:由能量等效法得出的等效脉冲宽度δ与分段中心βi的正弦值成正比。

114-3-4.gif (6364 bytes)

图3-4正弦脉宽调制的能量等效图

当N=20,Um(n)/Um(1)与U~m/UΔm的关系曲线

114-3-5a.gif (2002 bytes)

(a)调制电路

114-3-5.gif (12199 bytes)

(b)波形图

图3-5正弦脉宽调制法调制电路及波形图

  在实际的小型UPS中,常用图3-5(a)所示的用比较器组成的正弦脉宽调制电路来实现上述脉宽调制的目的。若将三角波脉冲送到比较器的反相端(?),将正弦波送到比较器的同相端(?),则在正弦波电压幅值大于三角波电压时,比较器的输出端将产生一个脉宽等于正弦波大于三角波部分所对应的时间间隔的正脉冲。于是在电压比较器的输出端将得到一串矩形方波脉冲序列。假设三角波的频率fΔ与正弦波的频率f之比为fΔ/f~=N(N称为载波比),为了使输出方波满足奇函数,N应是偶数。如果假定在正弦波大于三角波的部分所产生脉冲的中心位置,就是每一段脉冲的中心位置βi。

  从图3-5(b)可以看到,由于三角形Δabg与Δcdg相似,当载波比N固定,且N>20时,在比较器输出端产生的矩形脉冲的宽度正比于正弦波的幅值U~m与三角波幅值之比,该脉冲宽度也正比于分段中心角βi的正弦值,对于图3-5(b)所示的脉宽调制波形,

  当n=1(基波)时,基波幅值Um(1)及各次谐波的幅值Um(n)与脉冲宽度δ有关,而脉宽δ又与调幅比U~m/UΔm有关。因此,只要适当地调节输入到比较器同相端的正弦波电压的幅值大小就可以调节逆变器电压的大小。图3-6给出了Um(n)/Um(1)max(各次谐波的幅值与基波最大值之比)与U~m/UΔm(调幅比)的关系曲线。由图3-6可以看出:在这种调制方式下,当正弦波的幅值小于三角波的幅值时,即0≤U~m/UΔm≤1时,逆变器输出电压的基波分量几乎是与调幅比U~m/UΔm的数值成线性变化;当正弦波幅度等于三角波幅度时,逆变器输出电压的基波分量大约等于0.8Um(1)max;此后,若继续增大正弦波的幅度,即U~m>UΔm时,逆变器脉宽调制输出的正弦分布特性开始遭到破坏,这时Um(n)/Um(1)max与调幅比U~m/UΔm之间失去线性关系,开始呈现非线性特性。这种正弦脉宽调制方式的另一个重要特点是:在正弦波幅度小于三角波幅度范围内,输出波形中不包含3、5、7次等低次谐波分量。在脉宽调制输出波中仅存在与三角波工作频率相近的高次谐波。

114-3-6.gif (4434 bytes)

图3-6正弦波脉宽调制法

  对于载波比K≥20的正弦脉宽调制波形来说,这些高次谐波分量是17、19次谐波分量。在目前实际使用的中、小型UPS中,正弦波的工作频率是50Hz,三角波的工作频率在8~40kHz之间。因此,采用这种正弦脉宽调制法的逆变器输出电压波形中,实际上基本不包含低次谐波分量,它们所包含的最低次谐波分量的频率都在几kHz以上。正因为如此,在正弦波输

图3-7单相全桥逆变电路

出的UPS装置中,逆变器所需的滤波器尺寸可以大大减小。实际上,在目前的中、小型电源中,一般都是利用输出电源变压器的漏电感再并联一个8~10μF的滤波电容即可构成逆变器的输出滤波器。

3.2逆变器电路

  在线式UPS多采用单相桥式逆变电路,如图3-7所示。它是由直流电源E、输出变压器T及场效应管V1~V4管组成。

114-3-7.gif (3604 bytes)

图3-7 单相全桥逆变电路

  单相桥式逆变电路按其工作方式可分为:同频逆变电路、倍频逆变电路。

(1)同频逆变电路

  在同频逆变电路中,场效应管V1、V2、V3、V4的栅极G1、G2、G3及G4分别加上正弦脉宽触发信号,其波形如图3-8所示。在ωto~ωt1期间,uG1与uG2为一组相位相反的脉冲。uG3=0,uG4为高电平;在ωt1~ωt2期间,uG3与uG4为一组相位相反的脉冲,uG1=0,uG2为高电平,其工作过程如下:V1栅极出现第一个脉冲时,V2的栅极脉冲消失,于是V1、V4导通;V2、V3截止。输出变压器初级电流i1沿着E+→V1→变压器初级→V4→E-路径流动。由于V1、V4导通,电源电压几乎全部加在变压器初级两端,即:电源的能量转换到变压器,变压器次级感应出电压为:

  在这个电压推动下,变压器次级出现电流iO,它沿着“3”→R→L→“4”路径流动。变压器储存的能量一部分消耗在负载电阻R上,另一部分储存在负载电感L中。uO的波形如图3-8(e)所示。

114-3-8.gif (6625 bytes)

图3-8同频逆变电路主要波形

V1栅极的第一个脉冲消失时,V2的栅极出现第二个脉冲,V1截止。iO不能突变,仍按原来路径流动,负载电感中的能量一部分消耗在负载电阻上,另一部分储存在变压器中。它使电流i1也不能突变,i1一方面沿着“2”→V4→V6→“1”流动,变压器储存的能量消耗在回路电阻上;另一方面i1沿着“2”→V7→E→V6→“1”流动,变压器能量反馈给电源E。由于V4、V6导通,变压器初级短路,故u12≈0,uO≈0,故不会出现反向尖脉冲

[1] [2]

关键字:在线  原理  分析

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2011/0518/article_8705.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
在线
原理
分析

小广播

独家专题更多

迎接创新的黄金时代 无创想,不奇迹
迎接创新的黄金时代 无创想,不奇迹
​TE工程师帮助将不可能变成可能,通过技术突破,使世界更加清洁、安全和美好。
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved