LTC1645热插拔控制电路工作原理

2011-05-16 18:25:44来源: 互联网

---- 背靠背MOSFET管Q1-A和Q1-B都接到V(IN1)(5V)电源,而Q3-A和Q3-B接到V(IN2)(3.3V)电源。使用背靠背MOSFET管的原因是防止内部二极管与5V和3.3V电源短路。LTC1645的Gate1引脚控制Q3-A和Q3-B,Gate2引脚控制Q1-A和Q1-B。ON引脚对Gate1的导通门限电压为0.8V,对Gate2的导通门限电压为2.0V。V(CC1)和V(CC2)引脚的欠压锁定门限分别为2.3V和1.2V。因为图1所示电路选用了两个电源电压,所以有可能出现以下两种情况:

 

图1:LTC1645与LTCI1735(采用SEPIC变换器)构成3.3V和5V热插拔电路

---- 情况1:提供5V和3.3V电源
---- 当5V和3.3V电源电压分别加到V(IN1)和V(IN2)时,D1将V(CC1),V(CC2),Sense1和Sense2引脚上拉到大约4.7V,用来清除V(CC1)和V(CC2)的欠压锁定门限。COMP(+)引脚被R2与R6构成的分压器上拉到2.5V。因为COMP(+)引脚的电压(内部比较器的同相输入端)比1.24V门限电压高,所以COMPOUT引脚(比较器的漏极开路输出)被R7上拉到5V。这样使Q5导通,并将Q3-A和Q3-B的极下拉到地。ON引脚被R1,R4和R8上拉到2.74V左右。在一个工作周期(t=C2·1.24V/2μA)之后,来自电荷泵的10μA内部电源源接到Gate1和Gate2引脚。Gate1引脚被Q5下拉到地,而Gate2引脚的电压开始上升,其斜率规定为dV/dt=10μA/C1。内部电荷泵保证Gate2引脚电压大约上升到12V。当Gate2引脚上升到1V左右时,Q1-A和Q1-B开始导通,并且V(OUT_HOT_SWAP)开始上升。输出电压将平稳地上升输入电压,这里是5V。图2分别示出了Gate2和V(OUT_HOT_SWAP)引脚电压分别上升到12V和5V时的特性曲线。

图2:V(GATE2)和V(OUT_HOT_SWAP)引脚电压分别增加到12V和15V

关键字:热插拔  控制  控制电路  工作

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2011/0516/article_8588.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
热插拔
控制
控制电路
工作

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved