利用2SD315AI设计的驱动大功率IGBT原理

2011-05-10 11:33:27来源: 互联网

引言

IGBT常用的驱动模块有TLP250,以及EXB841/840系列的驱动模块。但在燃料电池城市客车DC/DC变换器的研制过程中发现,由于车载DC/DC变换器常常工作在大功率或超大功率的状态中,而处在这种状态下的IGBT瞬时驱动电流大,要求可靠性要高,使得传统的驱动电路已经不能满足其使用要求,经过研究分析,选用瑞士CONCEPT公司生产的用于驱动和保护IGBT或功率MOSFET的专用集成驱动模块2SD315A作为大功率IGBT(800A/1200V)的驱动器件,该驱动器集成了智能驱动、自检、状态反馈、DC/DC电源及控制部分与功率部分完全隔离等功能于一体。经过车载90kW DC/DC变换器实际道路工况运行实验表明,效果良好。

 IGBT的驱动要求

IGBT的驱动要求与其静态和动态特性密切相关,即极的正偏压、负偏压和栅极电阻的大小,对IGBT的通态电压、开关时间、开关损耗、承受短路能力、开关管C、E极问电压的变换率等都有不同程度的影响。其开关作用是通过加正向栅极电压形成沟道,给PNP晶体管提供基极电流,使IGBT导通。反之,加反向栅极电压消除沟道,流过反向基极电流,使IGBT关断。根据这样的特性,针对它的驱动电路应该满足:

·IGBT是电压型驱动,具有2.5~5V的阈值电压,有一个容性输入阻抗,因此,IGBT对栅极电荷非常敏感,需要有一条低阻抗值的放电回路,即驱动电路与IGBT的连线要尽量短。

·用内阻小的驱动源对栅极电容充放电,以保证栅极控制电压Vge有足够陡的前后沿,使IGBT的开关损耗尽量小。另外,IGBT开通后,栅极驱动源应能够提供足够的功率使IGBT
处于饱和状态,否则IGBT容易遭到损坏。

·当驱动电平+Vge增大时,IGBT通态压降和开关损耗均下降,但负载短路时的Ic增
大,IGBT能承受短路电流的时间减小,对其安全不利。

·在关断过程中,为尽快抽取PNP管的存储电荷,须施加一负偏Vge,但它受IGBT的G、
E间最大反向耐压限制。

·IGBT的栅极驱动电路应简单实用,最好自身带有对IGBT的保护功能,有较强的抗干
扰能力。

·由于IGBT在电力电子设备中多用于高压场合,故驱动电路与控制电路在电位上应严
格隔离。


2SD315A驱动模块

2SD315A模块能够驱动1200A/1200V的IGBT,DC的开关频率高于100kHz,可通过±15A的门极电流,实现0-100%的占空比调节。此外,具有完善的对于电源、电流的状态监测从而实现对于模块以及功率开关管的保护;该驱动模块分为接口单元、电气隔离、驱动单元等几个部分,每个驱动通道都把控制回路和主功率回路进行了电气隔离,如图1所示。

驱动模块的驱动能力及保护性能是人们较为关心的问题,以下是应用当中的几点体会:

·由于IGBT的栅极有很高的输入阻抗,因此在无栅极放电回路的情况下,其栅极易积累电荷,并且栅极氧化层很脆弱,仅能承受±20V的耐压,容易造成栅源极问的击穿,使IGBT损坏,在实际电路中采用了±15V的栅源偏压,从而提高了IGBT的短路耐量。

·为改善控制脉冲的前后沿陡度和防止振荡,减小IGBT集电极大的电压尖脉冲,根据该模块的使用手册合理选择栅极的串联电阻,既可获得良好的驱动脉冲,又控制了IGBT通断状态变化的过渡时间。

·用外接的电阻Rth来定义功率管导通时的管压降,当大于定义的最大管压降时,监测电路便输出故障报警信号,并关断功率管,从而保护了IGBT。

·当给驱动模块供电的电源电压过低时,则会影响驱动电路的可靠性,监控电路便向模块
内部发送故障信号,使整个模块处于封锁状态,保护了系统的安全。这里,模块的工作状态是由模块上的两路SO输出引脚的电平所表示,并经过逻辑关系接入到保护电路中实现状态检测。

 
 

应用实例

该驱动模块有两种工作方式:直接方式和半桥方式。当驱动器工作在直接方式时,驱动器的驱动通道之间没有联系,两个通道总是同时被驱动。而在半桥方式下,MOD输入端接GND,InA输入PWM信号,InB输入使能信号(高电平有效,低电平将所有通道封锁)。由于两个状态输出端SO1和SO2接在一起,所以两个驱动通道输出同一故障信号。死区时间是由模块上RC1和RC2的外接电路来确定,使驱动的两路输出信号不会同时为高电平。

利用2SD315A驱动高功率密度IGBT需要注意以下几点:

·工作模式MOD的设置和参考电阻Rth的选择是正确使用该驱动模块的前提,需要注意
在半桥工作模式下死区时间的设置以及Rth大小与功率开关管型号的匹配关系。

·合适的栅极电阻Rg对与IGBT的驱动非常重要。Rg太大,会使IGBT通断状态变化的过渡过程时间延长,能耗增加;但Rg太小,会使di/dt增大,可能引起门极电压振荡,造成触
发误导通,严重时可能会损坏IGBT。通过以下公式确定Rg可选择的最小值:


其中△U为栅极正反向偏置电压之差;Ig(max)为驱动电路所能提供的最大电流。

·注意驱动模块与主功率开关管之间的布线。栅极驱动布线对防止潜在的振荡、减慢门极电压的上升、减少噪声损耗、降低门极电源电压或减少门极保护电路的动作次数有很大的影响。因此,应尽量减小驱动器的输出级和IGBT之间的距离,并用绞线传递驱动信号。

2SD315A驱动模块设定在直接模式下,引脚MOD直接接+15V电源;参考电阻选用47kΩ;栅极驱动电阻选用2Ω;得到该驱动模块应用电路如图2所示。

图中S1、S2表示EUPEC的两只800A/1200V IGBT,图3为试验中得到的主功率开关管的驱动波形。由波形的形状和幅度可以判断出,IGBT工作正常。

由图3可以看出,波形的上升、下降沿均较陡峭,从IGBT关断到开通不到1个微秒,极大的减小了开关损耗;该模块能向IGBT提供合适的正向栅源电压,并可靠关断;这些对IGBT的正常工作均提供了重要的保证。此外,在实验中发现,为了得到更平直的正负向波形,可在模块的COMx和Visox引脚两端并联适当电容进行调整。


燃料电池城市客车行驶在诸如启动、变速、刹车等多种路况下时,其车用大功率DC/DC内的IGBT(800A/1200V)常常处在300~400V高压,或在极短时间内(≤200ms)承受近300A大电流的场合下,功率输出达几十千瓦到上百千瓦不等,与之配合使用的2SD315A隔离式驱动模块,在实际的城市道路工况进行运行试验中,完全满足了不同路况下对于功率需求的驱动要求,已经安全无故障行驶总里程超过四万公里,是一款性能优良的大功率驱动模块。

关键字:利用  设计  驱动  原理

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2011/0510/article_8426.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
利用
设计
驱动
原理

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved