超高速雷达数字信号处理技术

2011-04-18 23:52:57来源: 互联网

综述了超高速雷达数字信号处理技术的应用背景、研究内容、关键技术及解决方法.采用超高速数字信号处理技术实现了超高速数据采集、高速数字脉冲压缩、超高速雷达回波模拟等系统.
  关键词:雷达;超高速;数字信号处理;数据采集;脉冲压缩;信号产生;信号模拟

Ultra-High-Speed Radar Digital Signal Processing

LONG Teng,MAO Er-ke,YUE Yan-sheng,HUANG Ruo-jian
(Department of Electronic Engineering,Beijing Institute of Technology,Beijing 100081 China)

  Abstract:The application background,research area,key technique problems and their resolution of ultra-high-speed radar digital signal processing were discussed.An ultra-high-speed data acquisition system,a high-speed digital pulse compression system,and an ultra-high-speed radar echo simulator were realized.
  Key words:radar;ultra-high-speed;digital signal processing;data acquisition;pulse compression;signal generator;signal simulator

一、引  言
  本文所讨论的超高速数字信号处理,是指数百兆带宽信号的数字采集、处理技术超高速数字信号处理技术具有很多独特的问题,必须进行仔细的分析和研究.
  本文的目的,就是综述超高速雷达数字信号处理技术的应用背景、研究内容、关键技术及解决方案,并介绍作者已经实现的一些超高速雷达数字信号处理系统.

二、超高速数字信号处理在雷达中的应用
  1.距离高分辨率雷达数字信号处理
  距离高分辨率雷达具有多种优点[1].对于最为常用的线性调频脉冲(CHIRP)信号,为实现0.1~1m的距离分辨率,要求信号带宽可以达到150~1500MHz[2],因此是超高速数字信号处理技术的主要应用之一.
  2.合成孔径雷达数字信号处理
  合成孔径雷达是当前雷达侦察的主要方式之一[3],其分辨率已经从早期的10m量级发展到目前的1m~0.1m量级[4],因此同样需要进行超高速数字信号采集与处理.
  3.电子对抗与反对抗
  在电子对抗和反对抗领域,数字射频存储器技术是近年研究的热点[5].数字射频存储器的主要指标之一是瞬时带宽,其中3-bit量化的数字射频存储器带宽已经可以达到17GHz,8-bit量化的数字射频存储器带宽也可以达到220MHz[6].因此,数字射频存储器的基础也是超高速数字信号采集与处理技术.
  4.雷达数字接收机
  当前雷达系统研究中已经提出了雷达数字接收机的概念,并在频率较低的米波雷达中首先获得了应用[7].雷达数字接收机的关键技术是对微波信号的采集和处理[7],因此同样需要采用超高速数字信号处理技术.
  5.多功能雷达信号产生与处理
  雷达系统具有多种发射波形可以匹配不同的应用环境、通过多波形的组合使用取得最优的效果[8].直接数字合成(DDS)技术是数字波形形成的主要方法之一.当前DDS器件的水平已经可以达到400MHz[9],因此也是超高速数字信号处理技术的应用背景.
  6.雷达信号/干扰模拟器
  在雷达系统的研制中,为了在天线和微波前端不具备的条件下对雷达数字信号处理机进行调试,需要雷达视频信号/干扰模拟器[10].对于距离高分辨率雷达、合成孔径雷达,雷达信号/干扰模拟器也要能够模拟宽带视频信号,因此也是超高速数字信号处理技术的应用领域之一.

三、超高速数字信号处理的主要内容与特殊问题
  1.超高速数字信号处理的主要研究内容
  超高速数字信号处理主要包括以下研究内容[11]:
  (1)超高速数据采集 超高速数据采集是整个超高速数字信号处理的最前端,包括超高速AD变换和超高速数据存储.其中超高速AD变换的特殊问题是其中的超高速模拟电路,即AD变换的精度.它是整个超高速数字信号处理性能的基础.
  (2)高速实时数字信号处理 高速实时数字信号处理要完成对采集的超高速数据进行信号检测、截获、跟踪等处理,并具备不断修改、完善的潜力;因此其主要特点是实时性、多功能、可编程,故多采用高速实时数字信号处理芯片(DSP芯片)构成.当前先进DSP芯片的主要代表是TMS320C8x、TMS320C6x和ADSP2106x芯片等等.
  (3)超高速信号生成与信号模拟 这里的超高速信号生成指的是通过直接数字合成(DDS)方法产生各种雷达信号,因此其中核心的问题是超高速DA转换.这里的超高速信号模拟指的是通过数字仿真的方法模拟宽带雷达视频回波信号,因此核心的问题也是超高速DA转换.
  2.超高速数字信号处理的特殊问题
  超高速数字信号处理的特殊问题主要表现在以下几个方面[11,12]:
  (1)元器件选型 芯片选型的问题主要在于两个方面:一方面,传统的TTL芯片不能满足超高速数字信号处理的速度要求,必须采用更高速的芯片类型.另一方面,AD变换器、DSP芯片、专用芯片(如FFT、数字相关)、及DA变换器等芯片的选型应与系统的要求进行最佳匹配.
  (2)体系结构 系统的体系结构必须在信号带宽、数据存储量、数字信号处理速度等多项要求之间进行最优的折中.由于系统速度要求很可能超过单片采集或处理芯片的速度极限,因此必须考虑采用多路并行的体系结构.
  (3)数字电路的硬件实现 在硬件电路的实现中,由于信号之间的连线存在电阻、电容和电感,因此会造成信号的延迟、反射、串扰和噪声.这些现象在中低速系统中通常可以忽略,但是在超高速系统中则会变得非常严重.例如,印制板上的线每英尺会造成约2ns的延迟量,这一延迟在中低速系统中可以不考虑,而在超高速系统中它已等同甚至超过一级门延迟.所以,超高速数据采集系统中的信号连线必须进行特殊的处理,才能保证系统的正常工作.
  (4)模拟电路的抗干扰 在超高速数据采集、超高速信号生成/信号模拟等应用场合,除了数字电路之外,还有运算放大器、A/D变换器、D/A变换器等模拟器件.这些模拟器件很容易受到各种干扰,必须采取各种抗干扰措施来保证它们的精度.
  (5)系统功耗与散热 超高速系统的电流一般都远大于中、低速系统,因为超高速系统实际上是以大电流来换取高速度的.系统功耗引起的温升会使芯片的性能下降,严重时甚至会造成芯片的损坏.因此必须在系统设计时进行热性能分析,并仔细研究系统散热的方法.
  (6)超高速数字信号处理的软件算法 典型的雷达数字信号处理算法可分为底层算法和高层算法.底层算法主要是提高信噪比、抑制杂波等算法,包括脉冲压缩、滤波、恒虚警率处理、信号检测等.高层算法主要是雷达成像、目标识别等算法.此外,在电子对抗、信号生成、信号模拟等方面,也有其特殊的算法需要研究.
  超高速信号处理算法中一个比较独特的问题是需要研究信号处理算法的并行性、算法与硬件结构的最佳匹配问题.这是因为信号采集速度极高,要求信号的快速处理.在单片信号处理芯片性能不足的情况下,必须研究并行处理的处理机结构和与之相应的算法.

四、超高速数字信号处理关键技术的解决方案
  1.元器件的选型[13]
  对于超高速数字信号处理系统,传统的TTL芯片已无法工作.目前常用的超高速标准芯片系列是ECL芯片;其不同系列的最高工作频率可以达到250M、500M、甚至1600MHz(表1).对于更高速的系统;则需要采用砷化镓器件构成.

表1 常用芯片的最高触发器翻转频率(单位:MHz)

TTL TTL TTL TTL CMOS CMOS ECL ECL ECL ECL
74LS 74ALS 74S 74AS 74HCT 74ACT 10K 10KH 100K 100E
33 50 95 125 50 125 150 250 375 1600
  2.数字电路的实现[14]
  在数字电路的实现中,主要需要解决信号的延迟、反射、串扰、噪声问题.解决这些问题的方法,就是采用微波传输线作为信号之间的连线.微波传输线在端接电阻匹配的条件下可以消除反射,并精确控制信号的延迟.由于ECL芯片本身具有驱动50Ω端接传输线的能力,这就为微波传输线的实现奠定了基础.
  3.模拟电路抗干扰[15]
  模拟电路的干扰源主要包括空间电磁辐射的干扰、信号线之间的串扰、地线和电源线的共模干扰等因素.可以采用屏蔽、大面积接地、元器件的合理布局、电源滤波等多种手段解决这一问题.例如,可以采用铁氧体磁芯加电容滤波的方法来取得最好的滤波效果,并采用星形接地的方法来减小地线上的共模干扰.
  4.体系结构的选择
  体系结构的设计可以分为多个层次:最顶层的设计是整个数字信号处理系统的体系结构;进一步细化的层次是AD、存储器、DSP、DA等模块的体系结构.超高速系统体系结构最重要的特点就是各种层次上的并行性;而具体系统的体系结构设计则要根据不同的应用条件而定.
  5.系统功耗与散热[11]
  由于超高速系统的功耗很大,因此在系统设计时就必须把热设计作为必需的组成部分;在设计阶段就要仔细分析各个芯片的功耗、热阻、温度范围及推荐的散热方法.对于必须进行强制制冷的系统,可以在风冷、液冷等方案之间进行选择;一般来说,只要选择合适的风冷方法就可以使系统正常工作.
  6.采用先进的分析手段[16]
  电子设计自动化(EDA)技术可以对超高速系统的设计提供极大的帮助.先进的EDA工具可以分析PCB上传输线的延迟、反射和串扰,并对系统功耗和温度进行分析;采用先进的EDA工具还可以在严格定义的布线条件下完成系统的自动布线,因此可以大大提高超高速系统的设计成功率.

[1] [2]

关键字:数字信号处理  信号处理技术  技术

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2011/0418/article_7239.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
数字信号处理
信号处理技术
技术

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved