手机电池修复仪的设计与应用

2011-03-20 19:26:39来源: 互联网

当代社会发展的需要,几乎人人都在使用手机手机已经成为我们离不开的一项生活用品。而人们在频繁的使用中,逐渐发现手机电池并不能达到我们的使用要求,经常在使用一段时间后就出现充不进去电,放电时间变短的情况。一块刚充好的电池,没用多久就没电了,从而一种修复手机电池的修复仪就诞生了。

二、设计原理

(一)手机电池的介绍

现在一般手机电池中均采用的为锂离子电池。主要因为锂离子电池是锂离子(Li-Ion)和锂聚合物(Li-Pol),电池具有重量轻,容量大,内阻小的特点。但是我们需要按照它的特性来进行充电,否则对其损坏会很大,它的可充电次数也会大大折扣。

锂离子在充电过程中需要注意不能过充电和过放电,它有自身的最低电压和最高电压,一般最低电压在2.2V到2.3V之间,最高电压在4.2V到4.3V之间,所以我们在设计电路时需要注意设置放电终止电压和充电终止电压。

(二)设计思路

该设计电路主要分为放电和充电两个阶段。一般的充电器只是对电池进行简单的充电,而该修复仪多了一个放电过程。

放电阶段主要是先将电池中的残余电量彻底放掉,并且使其电压达到放电终止值。放电阶段主要注意放电电压终止值的设置,如果对电池进行过放电,将对电池造成很大损坏。

充电阶段我们与一般的充电器又有所不同,采用的是频率在周期性变化的脉冲信号对电池进行充电。主要考虑到脉冲信号可将电池中的化学物质逐渐激活,使电池达到出厂时的效果。同样,在充电时也不能超过充电电压终止值,过充电也有可能对电池造成永久性损坏。

三、制作过程

(一)放电电路的设计

1、设计要求

① 放电电流一般可取电池额定容量的0.2倍。

② 必须准确掌握放电终止电压,以免因过放电而损伤电池。

③ 以手动方式对放电进行启、停控制

2、设计要点

① 电池放电至终止电压时,应自动断开放电回路或自动转入充电状态。

② 便于对放电工作状态的监控。

以下为放电电路设计思路图:

放电电路图

驱动电路部分可由两个继电器构成一个自锁电路,放电结束时,开关自动断开,转入到充电部分。

(二)充电电路的设计

1、设计指标

① 可调恒流充电,最大充电电流500mA。

② 放电结束时,自动转入恒流充电状态。

③ 充电至充电终止电压时,恒流电路停止工作,并锁定“充电结束”状态。

2、设计要点

① 运用电压比较器监测电池电压,保证至充电终止电压时,能及时关断充电电流并锁定“充电结束”状态。

②自动功能与手动启、停功能兼备。

充电电路与脉冲信号结合,对电路进行充电。这里的脉冲信号可用555定时器来实现,用3个555来构成一个频率在周期变化的脉冲信号。电路图如图。

整个电路的连接需要有一个逻辑关系,可用与非门来实现,在设计中,我们采用了4012四相输入与非门。

脉冲信号电路图

(三)设计逻辑思路

1、放电电路逻辑关系

A点电位在放电状态时为低电位,充电状态时为高电位。此点电位我们暂且记录下。

2、充电电路逻辑关系

充电电路逻辑关系图

可见,B点电位在放电状态时为低电位,充电状态时为高电位,与A点电位相同。由此我们将这两点电位接入到与非门的输入端。

3、总体逻辑关系

将A、B两点与脉冲信号均接入与非门的输入端,再经一个非门输出信号。这样,就可构成了一个逻辑关系。如表1。接到电池两端,这里可以用一个开关TWH8778来连接。

表1:输出信号逻辑关系

其他电路部分,主要有电源控制部分,可采用整流、滤波、稳压将交流信号转换为我们需要的直流电源。充电电流可采用恒流源充电。

四、总结

该设计中所用到的电路和器件均为我们常见电路,对现在电类专业的学生很有帮助,可通过此类电子制作,巩固专业知识,加强对各部分电路的理解和各器件的性能及使用方法。

针对锂离子电池的修复仪在今后发展中是必不可少的,因为锂离子电池环保、节能的特点,它将是今后发展中的重点,很多家用电器产品都将逐步采用锂离子电池。

另外,该充电器还可经过改造对镍镉电池或是镍氢电池进行充电,可将其功能再进一步扩展,还留有很大的思考空间。

LQH55P_R0系列

接下来介绍对应大电流的功率电感LQH55P_R0系列。使用在数码相机(DSC),笔记本电脑和3.5/2.5英寸HDD等之中的功率电感必需能够对应大电流,同时要求低的直流电阻值。

这里所说的绕线型功率电感能够做到磁屏蔽越是高,直流电阻值越低。磁屏蔽若是高,磁通量则不会泄漏至外部,被铁氧体磁芯约束在内部,从而获得较大的感值。因此,使用较粗的绕线可以用较少的圈数获得感值和较低的直流电阻值。

图4:LQH55P_R0系列外形尺寸图

但另一方面,一旦磁屏蔽能提高,直流重叠特性就会恶化。

LQH55P_R0系列在卷线周围全部涂有磁性树脂,从而提高磁屏蔽,这样做能够获得更低的直流电阻值。另外,由精密的涂层技术控制磁性树脂的涂量,从而调节实际有效的μ并控制所需要的感值和直流重叠特性。图5中表示了磁性树脂涂量变化时的直流重叠特性。精密磁性树脂涂层技术使较大电流时可维持最低限度的感值,以及减少初期感值低下等直流重叠特性可以得到自由控制。

图5:磁性树脂涂量与感值和直流重叠特性的变化关系

表3及图6中表示了LQH55P_R0系列的额定电流表和直流重叠特性。

表3:LQH55P_R0系列额定表

图6:LQH55P_R0系列直流重叠特性

总结

便携型电子设备使用多个DC-DC转换器,在机器和电力供给的各种模块中多种多样。用在这些DC-DC转换器中的功率电感也同样在尺寸、性能上必需多种多样。

村田制作所拥有对应多种多样DC-DC转换器的各种尺寸、性能变化的绕线型功率电感。

为了今后继续为多种多样的便携电子设备用DC-DC转换器提供最合适的功率电感,在进一步扩充尺寸型号的同时,改善功率电感的性能,在机器的低消费功率也做出我们的贡献。

关键字:手机电池  设计  应用

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2011/0320/article_5823.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
手机电池
设计
应用

小广播

独家专题更多

TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved