3V DAC在±10V中的应用

2011-02-05 22:25:17来源: 互联网 关键字:DAC

概述

使用3.3V电源供电的现代逻辑系统有时运行在工业环境,可能需要±10V的电压驱动,例如PLC、发送器、电机控制等。满足这一需求的一种方法是选择能够提供±10V电压摆幅的DAC,但更好的方法是使用3.3V的DAC,然后将其输出放大到±10V,理由是:
  • 3.3V DAC比±10V DAC具有更高的逻辑完整性。
  • 3.3V DAC具有更高速率的逻辑接口,可以解脱微控制器部分任务使其处理其它工作。
  • DAC有可能集成在一个大规模、3.3V供电的芯片内(如微控制器),无法提供±10V输出摆幅。
  • 外部负载可能要求一定的输出电流驱动,或驱动容性负载,而±10V DAC无法达到这一需求。

电路框图

电路框图如图1a所示,包含五个主要部分:DAC、基准源、偏置调节、基准源缓冲器与输出缓冲器。

DAC提供相对于基准点压的数字至电压转换,偏置电路对DAC单极性传递函数进行调节,以产生双极性输出,并可校准0V输出点。基准缓冲器能够为基准源提供负载隔离和失调调节。输出缓冲器将偏置电压叠加到信号上,并提供所需的增益,使输出摆幅达到所需要求。另外,输出缓冲器还提供一定的负载驱动能力。

电路说明

图1和图1a所示电路提供了一个将3.3V供电、16位DAC输出通过放大获得±10V输出摆幅的方案。DAC (U2)输出范围:0至2.5V,连接至运算放大器U3的同相输入端。放大器提供(1 + 26.25k/3.75k)或8倍的同相增益。运算放大器的反相输入端接+1.429V电压,该电压由基准和电阻分压网络产生。运算放大器对反相输入的增益为-(26.25k/3.75k)或-7。DAC的0V输出对应于最大负向电压:(0 x 8 ) - (7 x 1.429) = -10V。DAC的满量程输出2.5V对应于最大正向电压:(2.5 x 8) - (7 x 1.429) = +10V。

图1.
图1.

图1a.
图1a.

电路包括以下器件:
  • U1:MAX6133A,2.5V基准源
  • U2:MAX5443,16位、3.3V供电串行DAC
  • U3与U4:OP07A,精密运算放大器,±15V供电
  • U5:MAX5491A,带有ESD保护的精密电阻网络,3:4分压比
  • U6:MAX5491A,带有ESD保护的精密电阻网络,1:7分压比
  • U7:MAX5423,100k、256级、非易失数字电位器

基准源

2.5V基准既是DAC的参考电压,也用于生成+1.429V电压。这两项功能使用了相同的基准源,因此,这两个电压间的任何跟踪误差都会影响零失调电压,因此,共模误差只会影响输出的满量程增益,而增益一般不是非常关键的参数。选择2.5V作为主基准是由于该电压非常通用,并且在3.3V、5V供电时均适用。考虑到器件本身的优异性能,我们选择了小尺寸µMAX®封装MAX6133A。该器件的重要参数包括:输出电压精度(±0.06%)、温度系数(7ppm/°C)和长期稳定性(145ppm/1kHrs)。

数模转换器

工业控制应用中最重要的参数是零点失调误差,本例中MAX5443的单极性输出具有±2 LSB失调误差和±10 LSB的增益误差。这些指标足以满足大多数应用的需求,为了将DAC输出转成双极性信号,通常采用偏置电路将DAC的零点转换为-10V (负向满量程),将中间码转换为0V。这时DAC的中间码误差是零点失调与增益误差之和,而非±2 LSB。有些应用或许不能接受这一指标,所以我们使用了数字电位器,对其零点输出进行再次校准。

运算放大器

运算放大器U4作为基准缓冲器放置在基准分压电阻网络(U5)与运算放大器(U3)增益电阻网络之间。如果系统中使用了一个以上的DAC,这些DAC可以共用该缓冲器输出。运算放大器U3对DAC电压进行放大,并为其提供偏置。该运算放大器的选择与配置由负载需求决定。应考虑以下指标:
  • 最大电压摆幅
  • 最大驱动电流
  • 容性负载
  • 短路保护
  • ESD保护
本例中,OP07A能够为负载提供±10V/10mA的驱动,R1与C2网络允许运算放大器驱动较大的容性负载。

影响系统精度的运算放大器参数有VOS (25µV)、IOS (2nA)。IB (2nA)的影响可以由R3、R4抵消。当运算放大器的每一输入端等效电阻相同时,可以消除IB的影响。OP07A的0.1V/µS摆率可能限制系统摆率,但在工业控制应用中往往不存在问题。

电阻网络

电阻网络U5 (3:4比例)将+2.5V基准电压降至+1.429V,电阻网络U6 (1:7比例)设置运算放大器U3的增益。比较重要的参数是初始比例误差(0.035%)和比例温度系数(5ppm/°C)。选择MAX5491是由于该器件具有±2kV的ESD保护,这一点非常关键,因为U6的一端可能会暴露在板外,需承受ESD放电的冲击。

数字电位器

本系统使用256级数字电位器MAX5434调节零点失调误差,该器件具有非易失存储器,能够在电源关闭后保持失调值。U7、U5与R2组成的电阻网络可在0V提供大约±100 LSB的调节范围。

分析

对本电路进行PSPICE灵敏度分析,结果表明最大零点失调误差为13 LSB,利用数字电位器可以修正该误差。温度分析结果表明总的温漂误差为0.126 LSB/°C。当温度变化100°C时,存在12.6 LSB的失调误差。对于绝大多数应用在允许范围之内。

表1. 灵敏度分析,零输出,初始误差(以LSB为单位)
Ref Design Component Description Error Source Error Value Error Units Sensitivity Sensitivity Units Output Error (LSBs)
U1 MAX6133A 2.5V Ref Output Accuracy 0.06 % -2.74E - 04 LSBs/% 0.00
U2 MAX5443 16 bit DAC Gain Error 5 LSBs 1.00E + 00 LSB/LSB 5.00
U3 OP07A OpAMp VOS 25 µV -2.62E + 04 LSB/V 0.66
U3 OP07A OpAMp IOS 2 nA 8.55E + 07 LSB/A 0.17
U3 OP07A OpAMp IB 2 nA 1.08E + 06 LSB/A 0.00
U4 OP07A OpAMp VOS 25 µV -2.29E + 04 LSB/V 0.57
U4 OP07A OpAMp IOS 2 nA 1.68E + 08 LSB/A 0.34
U4 OP07A OpAMp IB 2 nA 8.10E + 03 LSB/A 0.00
U5 MAX5491A Res Network Ratio Tolerance 0.035 % 1.40E + 02 LSB/% 4.90
U6 MAX5491A Res Network Ratio Tolerance 0.035 % 4.09E + 01 LSB/% 1.43
Total
13.07

表2. 敏感性分析,零输出,温度误差(以LSB/°C为单位)
Ref Design Component Description Error Source Error Value Error Units Sensitivity Sensitivity Units Output Error (LSB/°C)
U1 MAX6133A 2.5V Ref Output Temp Co 7 ppm/°C 2.74E - 04 LSBs/% 1.92E - 07
U2 MAX5443 16 bit DAC Gain Temp Co 0.1 ppm/°C 5.00E - 02 LSB/% 5.00E - 07
U3 OP07A OpAMp VOS Temp Co 0.6 µV/°C -2.62E + 04 LSB/V 1.57E - 02
U3 OP07A OpAMp IOS Temp Co 25 pA/°C 8.55E + 07 LSB/A 2.14E-03
U3 OP07A OpAMp IB Temp Co 25 pA/°C 1.08E + 06 LSB/A 2.70E - 05
U4 OP07A OpAMp VOS Temp Co 0.6 µV/°C -2.29E + 04 LSB/V 1.38E - 02
U4 OP07A OpAMp IB Temp Co 25 pA/°C 1.68E + 08 LSB/A 4.20E - 03
U4 OP07A OpAMp IB Temp Co 25 pA/°C 8.10E + 03 LSB/A 2.02E - 07
U5 MAX5491A Res Network Ratio Temp Co 5 ppm/°C 1.40E + 02 LSB/% 7.00E - 02
U6 MAX5491A Res Network Ratio Tamp Co 5 ppm/°C 4.09E + 01 LSB/% 2.05E - 02

关键字:DAC

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2011/0205/article_4545.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:理解高性能ADC中时钟公差对50Hz/60Hz噪声抑制的影响
下一篇:数模转换芯片AD9772A的特点及其应用

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利
推荐阅读
全部
DAC

小广播

独家专题更多

东芝在线展会——芯科技智社会创未来
东芝在线展会——芯科技智社会创未来
2017东芝PCIM在线展会
2017东芝PCIM在线展会
TI车载信息娱乐系统的音视频解决方案
TI车载信息娱乐系统的音视频解决方案
汇总了TI汽车信息娱乐系统方案、优质音频解决方案、汽车娱乐系统和仪表盘参考设计相关的文档、视频等资源
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2017 EEWORLD.com.cn, Inc. All rights reserved