双极发射极跟随器:具有双通道反馈的RISO

2011-02-05 14:35:22来源: 互联网 关键字:双极发射极  跟随器  RISO

我们选择用于分析具有双通道反馈的RISO双极发射极跟随器为OPA177,具体情况请参阅图1。OPA177为一款低漂移、低输入失调电压运算放大器,其能在±3~±15V的电压范围内工作。

图1:双极发射极跟随器运算放大器的技术规范。
图1:双极发射极跟随器运算放大器的技术规范。

图2显示了一款典型的双极发射极跟随器的拓扑结构。请注意,用于Vo的正负输出驱动均为双极发射极跟随器。目前,包含“等效电路图”(表明运算放大器内部所用输出级的拓扑结构)的产品说明书并不多见。为此,只能通过厂商的内部资料,我们才能确切了解输出级的结构。

图1:典型双极发射极跟随器运算放大器的拓扑结构。
图2:典型双极发射极跟随器运算放大器的拓扑结构。

我们用于分析双极发射极跟随器的具有双通道反馈的RISO电路如图3所示。FB#1通过RF直接向负载(CL)提供反馈,从而促使Vout与VREF相等。FB#2通过CF提供了第二条反馈通道(在高频率时占支配地位),从而确保了运行的稳定性。Riso将FB#1和FB#2相互之间隔离开来。需要注意的是,在目前用于稳定电容性负载的许多技术中,我们采用了经改进的Aol方法(当采用这种方法时,运算放大器的输出阻抗和电容性负载改变了运算放大器的Aol曲线)。在改变后的Aol曲线中,我们在图上标出1/,这将有助于电路的稳定运行。当采用具有双通道反馈的RISO时,我们发现,更易于维持运算放大器Aol曲线不变并在图上标出FB#1 1/β和FB#2 1/β曲线。于是,我们将运用叠加的方法,来获得一条最终(net)的1/Bετα曲线,这样,当在运算放大器的Aol曲线上进行标绘时,我们就能够轻松地生成一款针对这种电容性负载稳定性问题的解决方案。

图3:具有双通道反馈的RISO:发射极跟随器。
图3:具有双通道反馈的RISO:发射极跟随器。

一旦我们选择了运算放大器,如图4所示的Aol测试电路就为开展稳定性分析提供了前提基础。Aol曲线可从产品说明书中获取,或者从如图所示的Tina SPICE仿真中测量得出。Aol测试电路采用双电源供电,即使Vout近乎为零伏,我们仍可测量空载时的Aol曲线,而且输入共模电压的要求易于满足。R2和R1以及LT为低通滤波器函数提供了一条AC通道,从而允许我们在反馈通道中进行DC短路和AC开路操作。务必提请注意的是,在进行AC分析前,SPICE必须开展DC闭环分析,以找到电路的工作点。另外,R2和R1以及CT为高通滤波器函数提供了一条AC通道,这样,使得我们能将DC开路和AC短路一起并入输入端。LT和CT按大数值等级选用,以确保其在各种相关的AC频率时,电路短路和开路情况下的正常运行。

图4:Aol测试示意图:发射极跟随器。
图4:Aol测试示意图:发射极跟随器。

图5:Aol测试结果:发射极跟随器。
图5:Aol测试结果:发射极跟随器。

从TinaSPICE仿真测量得出的OPA177 Aol曲线如图5所示。测量得出的单位增益带宽为607.2kHz。

现在,我们必须测量如图6所示的Zo(小信号AC开环输出阻抗)。该Tina SPICE测试电路将测试空载OPA177的Zo。R2和R1以及LT为低通滤波器函数提供了一条AC通道,这样,使得我们能将DC短路和AC开路一起并入反馈电路。DC工作点在输出端显示为接近零伏,这也就是说,OPA177没有电流流入或流出。此时,通过运用1Apk AC电流生成器(我们能够扫视10mHz至1MHz的AC频率范围),Zo的测量工作就可以轻松完成。最后,得出测量结果Zo=Vout(如果将测量结果的单位从dB转换为线性或对数,那么Vout也将为以欧姆为单位的Zo)。

图6:空载Zo测试电路:发射极跟随器。

从图7中,我们可以看出,OPA177 Zo是双极发射极跟随器输出级所独有的特征,而且这种输出级的Ro在OPA177单位增益带宽之内,是控制输出阻抗的专门组件。OPA177的Ro为60欧姆。

图7:开环输出阻抗:发射极跟随器。

图8:Zo外部模型:发射极跟随器。

为了使1/β分析的情况包括在Zo与Riso、CL、CF以及RF之间相互作用的影响结果内,我们需将Zo从运算放大器的宏模型中分离出来,以便于弄清楚电路中所需的节点。这种构思如图8所示。U1将提供了产品说明书中的Aol曲线,并从Riso、CL、CF以及RF的各种影响中得到缓冲。

图9:具有双通道反馈的RISO:发射极跟随器Zo外部模型详图:发射极跟随器。

通过如图9所示的Zo外部模型,我们能够测量Zo与Riso、CL、RF以及CF之间相互作用对1/β的影响。在Zo外部模型中,设置Ro=Ro OPA177,实际测量值为60欧姆。压控电压源VCV1将运算放大器宏模型U1从Ro、Riso、CL、CF以及RF中隔离开来。将VCV1设置为x1,以确保产品说明书中的Aol增益不变。由于我们要在稳定性状况最糟的情况下(只存在CL以及我们计算得出的空载Zo[此时Ro=60欧姆])分析这种电路,因此,务必排除各种大的DC负载。VOA是一个与运算放大器相连的内部节点,在实际工作中,我们无法实现对这种节点的测量。同时,许多SPICE宏模型上的这种内部节点接入,也并非易事。对1/β进行分析(相对于VOA),已涵盖了Ro、Riso、CL、CF以及RF的影响。如果未采用Zo外部模型,SPICE中的最终稳定性仿真就无法标绘出1/β的曲线;但是,如果采用Zo外部模型,则可标绘出环路增益的曲线以确认我们分析的正确性。

首先,我们要分析如图10所示的FB#1。请注意,由于我们只分析FB#1,所以CF可视为处于开路状态。接下来,我们将分析FB#2。然后,通过采用叠加的方法,将两条反馈通道合并在一起,求取最终的1/β。分析结果如图上所示,有关的公式推导和具体细节,请参阅下一张图(图11)。我们发现,当fzx=183.57Hz时,FB#1 1/β曲线的增益为零。低频1/β值为1。如欲获得该增益,那么低频1/β值应大于1。

图10:FB#1分析:发射极跟随器。

图11:FB#1 1/β公式的推导:发射极跟随器。

FB#1β的公式推导如图11左侧所示。由于1/β是β的倒数,所以FB#2 1 1/β的计算结果可以轻而易举的被推导出来,具体推导过程,请参阅图11右侧。从图中我们还发现,在β推导过程中的pole,fpx变成了1/β推导过程中的zero,fzx。 我们将采用如图12所示的电路来开展AC分析:通过Tina SPICE,求取FB#1的1/β,OPA177的Aol以及只采用FB#1电路的环路增益。正因为如此,所以我们将CF从图中除去。

FB#1 1/β的结果标示在图13中的OPA177 Aol曲线上。在环路增益为零的fcl处,我们发现,接近速率为40dB/decade:[(Aol曲线上的-20dB/decade)-(FB#1 1/β曲线上的+20dB/decade)=-40dB/decade接近速率)]。

图12:FB#1AC电路分析:发射极跟随器。

接近速率的经验数据表明了存在的不稳定性。我们对FB#1的分析是基于zero、fzx=183.57Hz,低频1/β=1的情况。从图13中可以看出,我们的一阶分析准确地推算出了FB#1 1/β的数值。

图13:FB#1 1/β曲线图:发射极跟随器。

从图14中我们发现,只配置FB#1的电路环路增益分析显示,在环路增益为零的fcl处,相位裕度接近零。这样,就明确证实了电路的不稳定性。通过检测图13中Aol曲线上的FB#1 1/β曲线,可推算出环路增益曲线上的极点和零点。

图14:FB#1环路增益分析:发射极跟随器。
图14:FB#1环路增益分析:发射极跟随器。

图15:FB#1瞬态稳定性测试电路:发射极跟随器。
图15:FB#1瞬态稳定性测试电路:发射极跟随器。

如果我们有任何疑问,或如果只采用FB#1构建参考缓冲电路,此时,我们可运用如图15中的电路,进行实际的瞬态稳定性测试。

图16中的瞬态稳定性测试结果同时与Aol曲线上的1/β值和环路增益曲线一致,因此,证明了只采用FB#1构建参考缓冲电路,将导致电路运行的不稳定性。

图16:FB#1瞬态稳定性测试:发射极跟随器。

现在,我们必须弄清楚如何生成一款解决方案,以保证电容性负载参考缓冲电路的稳定性。此时,我们进一步了解了如图17所示的Aol曲线和FB#1 1/β曲线。如果我们添加如图17所示的FB#2 1/β曲线,我们则会看到一条最终的1/β曲线,这样,根据fcl处的接近速率以往的稳定性经验,我们可以推断电路的运行也将是稳定的。

另外,我们将促使fpc低于1/β曲线中的fzx一个decade,以确保当频率低于fcl时,相位裕度优于45度。上述工作通过调整1/βFB#2的高频部分,使其比FB#1低频1/β高出+10dB。然后,设置fza,使其至少低于fpc一个decade,以确保当实际应用中进行参数变化时,能够避免BIG NOT。通过观察,我们发现,最终的1/β曲线是在FB#1 1/β曲线和FB#2 1/β曲线中选择最小数值的1/β通道而形成的。

务必请记住,在双反馈通道中,从运算放大器输出端至负极输入端的最大电压反馈将主导着整个反馈电路。最大的反馈电压意味着β值最大或者是1/β值最小。图18向我们展示了这种关键的推算技巧。

最后,在FB#2取得支配地位之前,预计Vout/Vin的传输函数将随着FB#1的变化而变化。此时,Vout/Vin将会衰减至-20dB/decade,直至FB#2与Aol曲线相交,然后,将随着Aol曲线下降。

图17:FB#2图解分析:发射极跟随器。

图18:双通道反馈、叠加以及1/β:发射极跟随器。

图18告诉我们,当整个运算放大器电路采用双通道反馈电路时,最大的β值电路将居支配地位。一个很明显的例子就是,如果有两个人对着您的同一只

[1] [2] [3] [4]

关键字:双极发射极  跟随器  RISO

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2011/0205/article_4526.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:基于SA605和AD9850的接收电路设计及应用
下一篇:16位隔离工业控制电压输出模块电路原理图

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利
推荐阅读
全部
双极发射极
跟随器
RISO

小广播

独家专题更多

东芝在线展会——芯科技智社会创未来
东芝在线展会——芯科技智社会创未来
2017东芝PCIM在线展会
2017东芝PCIM在线展会
TI车载信息娱乐系统的音视频解决方案
TI车载信息娱乐系统的音视频解决方案
汇总了TI汽车信息娱乐系统方案、优质音频解决方案、汽车娱乐系统和仪表盘参考设计相关的文档、视频等资源
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2017 EEWORLD.com.cn, Inc. All rights reserved