DAC构成开环、闭环和“设定后便不需再过问”系统

2011-01-23 09:56:56来源: 互联网
    当选择数模转换器 (DAC) 时,设计师可以从种类繁多的 IC 中选择。DAC 可以针对具体的应用划分成很多不同类别。不过,DAC 的划分也可以简化,仅分成 DC 或低速调节所需的 DAC和产生高速波形所需的 DAC。 本文专注于低速应用所需的 DAC,而无论该应用是低分辨率还是高分辨率、是粗略调节还是精细调节。
 
    就选择低速 DAC 而言,决定设计是闭环、开环或“设定后便不需再过问”的系统是很重要。每一种设计都需要一个具某些关键性能规格的 DAC。
 
 
    闭环系统包括一条反馈通路,以检测和校准任何误差。传感器根据诸如伺服电动机、流量阀或温度检测单元等的物理参数监视输出。然后传感器将数据馈送回控制器,而控制器则利用这个信息决定是否需要校正。
 
    DAC 和模数转换器 (ADC) 是位于闭环系统核心的关键组件。DAC 用在前馈通路中以调节系统,ADC 用在反馈通路中,以监视这些调节的效果。它们一起施加和检测模拟控制信号,以真实地调节它们控制的参数。
 
    电动机控制是这类闭环系统的一个例子,如图 1 中详细说明的那样。首先,将一个想要的输出 (设定点) 加到控制器上,控制器对这个输出和反馈信号进行比较。如果需要校正,那么控制器会调节 DAC 的输入编码,然后 DAC 在其输出端产生一个模拟电压。该 DAC 的输出电压通过一个功率放大器放大,以给电动机提供所需的驱动电流。
 
    在这个闭环系统的下一级,用一个转速计测量电动机的旋转速度。旋转信号是该闭环系统的实际输出或可变过程。ADC 将该转速计的输出数字化,并将数据发送到控制器,在控制器中,由算法决定是否需要在 DAC 输出以及最终的电动机上进行任何校正。采用这种方式,误差被降到可接受的水平。理想情况下,反馈允许闭环系统消除所有误差,从而有效地限制噪声、温度、外 力或其他不想要的信号等任何误差来源的影响。
 
    闭环系统的性能取决于准确的反馈通路,包括传感器和 ADC。本质上,反馈通路补偿了前馈通路的误差。因为 DAC 在前馈通路中,其积分非线性 (INL) 误差就自动得到了补偿。INL 误差是 DAC 输出端实际的传递函数与理想传递函数之间的偏差。不过,DAC 必须有良好的差分非线性 (DNL),并且必须相对于数据表中规定的位数呈单调性。DNL 误差是 DAC 模拟输出端的实际电压变化与理想电压步进 (等于 DAC 输入编码中 1 个最低有效位 (LSB) 步进) 之差。单调的 DAC 意味着,模拟输出始终随着数字编码的提高而提高或保持与其相同 (反之亦然)。始终大于 -1LSB 的 DNL 规格意味着单调性。图 2 显示 DAC 模拟输出电压相对于 DAC 输入编码的传递函数。
如果 DAC 不是单调的,那么会存在一个负反馈变成正反馈的区域。这可能导致振荡,而振荡最终可能毁坏电动机。
 
未标题-1.jpg
 
1:闭环系统举例
 
未标题-1.jpg
 
未标题-1.jpg
 
2DNL 传递函数
 
未标题-1.jpg
 
 
    开环系统没有反馈通路。这意味着,系统自身必须是准确的。开环控制对于良好定义的系统是有用的,在这类系统中,输入编码及其在负载上所导致行动之间的关系是已知的。如果负载不是非常可预测的,那么最好使用闭环控制。
 
    开环系统的一个例子如图3所示。在这个例子中,DAC 驱动凌力尔特稳压器 LT3080 的 SET 电压引脚。SET 引脚是误差放大器的输入和输出电压的调节设定点。LT3080 的输出电压范围为 0V 至绝对最大额定输出电压。
 
    DAC 的分辨率决定 SET 引脚调节的步进大小。例如,一个具有 5V 基准的 8 位 DAC 有 5V / 28 = 19.5mV 的 LSB。一个具有同样 5V 基准的 12 位 DAC 有 1.2mV 的 LSB,一个 16 位 DAC 有 76µV 的 LSB。这意味着,就一个理想 DAC 而言,数字编码每增大一次,模拟输出都应该增加 76µV。
 
    开环系统中的其他重要参数包括偏移、增益误差、基准电压误差以及这些参数随时间和温度变化的稳定性。INL 尤其重要,因为与闭环系统相比,DAC 的 INL 对系统的总体线性度有直接影响。
未标题-1.jpg
 
图 3:开环系统举例
 
未标题-1.jpg
 
“设定后便不需再过问”的系统
 
    DAC 线性度起到重要作用的第三种应用是“设定后便不需再过问”的系统。在这类系统中,调节或校准只进行一次,也许在制造时或安装时。因此,这类系统一开始是一 种闭环系统,然后又变成开环的。所以,与初始准确度 (偏移、增益误差、INL) 有关的任何参数都不关键,因为这些参数在调节时都得到了补偿。但是一旦反馈去掉,稳定性就变得很关键了。表明稳定性的数据表性能规格包括:增益误差漂移、 失调和基准漂移。图 4 显示一个“设定后便不需再过问”的应用例子。在这张图中,一个较低分辨率的 DAC 驱动一个可编程增益放大器,该放大器设定精准 DAC 偏移调节引脚上的电压。在初始系统校准时,该较低分辨率 DAC 用来有效地校准精准 DAC 的增益偏移。这个调节代码可以存储在非易失性存储器中,并在系统每次加电时装载。
未标题-1.jpg
 
图 4:“设定后便不需再过问”的系统举例
 
未标题-1.jpg
 
进一步了解 DAC DC 性能规格
 
    一旦决定了闭环、开环或“设定后便不需再过问”系统的类型,就该选择最好的 DAC 了。正如之前提到的那样,有些应用需要粗略调节,这意味着系统仅需要有限数量的可变设置。在这种情况下,8 位或 10 位分辨率的 DAC 一般就足够了。就需要更精细控制的系统而言,12 位 DAC 可以提供足够的分辨率。在今天的市场上,16 位和 18 位 DAC 提供最精细的每 LSB 分辨率。
 
    LTC2600 是一种 16 位 8 通道 DAC,是为闭环系统而设计的。看一下它的 DC 性能规格会发现这是很明显的。典型的 INL 是 ±12LSB,最大值为 ±64LSB。典型的 INL 随输入代码的变化曲线在图 5 的下部显示了这些性能规格。16 位单调性和 ±1LSB DNL 误差允许在前馈通路中进行精准控制。正如前面提到的那样,前馈误差对闭环系统来说不重要,只要该 DAC 是单调的就行。
 
    相反,新的 LTC2656 是一种 8 通道 DAC,所有 8 个 DAC 都提供 16 位单调性和卓越的 ±4LSB INL 误差,从而使该器件可能同时适合开环和闭环系统。LTC2656 封装中所有 8 个 DAC 的典型 INL 随代码变化的曲线如图 5 所示。在 16 位 8 通道 DAC 类别中,LTC2656 提供最佳 INL。
 
    单个封装中的 8 个 DAC 都实现高线性度不是一个容易的设计任务。封装压力和电压随温度的漂移都必须在设计中考虑到。单个 DAC 实现较严格的 INL 性能规格会容易得多。例如,凌力尔特公司提供的 LTC2641 是一种单 16 位 DAC,该器件提供 ±1LSB INL 和 DNL 的最高 DC 性能规格。
 
    除了 INL 和 DNL,其他要考虑的重要 DC 性能规格是偏移误差 (或零标度误差) 和增益误差 (满标度误差)。偏移误差表示,在 (或接近) 零标度输入编码时,实际传递函数与理想传递函数的匹配程度。就需要直到地的精准控制应用而言,偏移误差是非常重要的。LTC2656 提供非常低的 ±2mV 最大偏移误差。
 
    增益误差表示实际传递函数斜率与理想传递函数斜率的匹配程度。增益误差和满标度误差有时可互换使用,但是满标度误差同时包括增益误差和偏移误 差。LTC2656 提供 ±64LSB 的最大增益误差,这等于满标度的0.098% (64/65536),是一个非常小的最大增益误差。
 
    具有非常好的偏移和增益误差的 DAC 可能允许系统不必运行控制器或 FPGA 中软件的校准周期。一个随时间和温度变化漂移非常小的 DAC 还使设计更简单,因为系统工程师不需要经常校准。
未标题-1.jpg
5LTC2656 LTC2600 的比较
 
未标题-1.jpg
 
未标题-1.jpg
 
6LTC2656 框图
 
未标题-1.jpg
 
±10V 输出的 DACs
 
    之前提到的 DAC 用于单电源或单极性 0V 至 5V 系统。不过,有些闭环、开环或“设定后便不需再过问”的系统需要 ±10V DAC。就这些高压系统而言,设计师既可以用具可编程增益放大器的单极性 0V 至 5V DAC来执行增益和电平移动,或者也可以由 DAC 直接提供 ±10V 的信号。
 
    凌力尔特公司提供单、双和四通道 DAC 供客户选择,这些 DAC 提供高达 ±10V 的输出电压。LTC1592 是单通道 16 位 DAC 的一个例子,该器件提供两个单极性和 4 个双极性可由软件编程设定的输出电压范围,包括 0V 至 5V、0V 至 10V、±2.5V、±5V、±10V 和 -2.5V 至 7.5V。因此,同一个 DAC 既可以用于单极性系统也可以用于双极性系统,而无需彻底地重新设定控制器。例如,将 DAC 输出范围从 0V 至 5V 改变到 ±10V,仅需要改变至 DAC 串行位流中的两个位。
 
结论
 
    DAC是开环、闭环或“设定后便不需再过问”系统的关键组件。这类系统每一种都需要 DAC 提供不同级别的准确度和分辨率。在特定分辨率时,总是有一些因素需要权衡,如价格、封装大小、基准准确度和输出阻抗。就最高精确度的系统而言,选择 DAC 时很重要的是不仅要考虑数据表第一页上提供的位数是多少,还要考虑 INL、DNL、偏移误差、增益误差等 DC 性能规格保证有多高的准确度。

关键字:DAC  开环系统  闭环系统

编辑:金海 引用地址:http://www.eeworld.com.cn/mndz/2011/0123/article_3031.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
DAC
开环系统
闭环系统

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved