基于CPLD的多路信号采集器的硬件电路设计

2010-12-22 15:41:45来源: 互联网

      1引言

  存储测试的特点是集多参数微型传感器及信号调整、信息采集、信息存储及传输接口电路为一体,对被测物体的工作环境、运动控制等多通道、大容量参数进行(实时、动态)数据采集、存储、事后回收、数据再现、数据分析。目前,存储测试技术已经在许多重大武器型号的研制、生产中得到成功应用,并取得了一系列重要科研成果。解决了过去无法解决的重大测试难题,显示出了突出的优越性。

  2 硬件设计

  2.1 系统框图

  本系统中有1路速变模拟信号、8路缓变模拟信号、4路数字信号。该采集系统能实现采集0~10V之间的模拟信号,其中单路速变模拟信号采样率不低于40Khz,8路缓变模拟信号采样率不低于12.5Khz,两者精度均在0.1%,同时还能够存储4路数字信号。信号记录时间均不低于0.75s,整体设计如图1所示。
 

 

图1 采集系统整体框图


  2.2信号调理设计

  在本系统中,由于模拟输入信号的电压范围是0~10V,所以此次设计使用LM324运算放大器组成的比例电路将输入信号变换成0~2.5V电压。然后输入模拟开关经过跟随器后,再输入A/D转换器。4路数字信号使用一个5V的稳压管,将输入数字信号中大于5V的高电平信号钳制在5V,起到了调压的作用。如果是低于5V,那么电压将不改变。

  2.3输入通道设计

  存储测试系统常常需要多通道同时采集。此次设计中根据被测信号的特点选用ADG506模拟开关进行各通道的切换,该模拟开关具有开关速度快、泄漏小等特点,从而用最简单的硬件电路完成多路信号的存储测试。

  2.4采集芯片选用:

  此次设计采用AD公司的AD7492采集芯片,AD7492为12位高速、低功耗、逐次逼近式AD转换器。它可在2.7V-5.25V的供电电压下工作,采样频率最高为1.25MSPS,从而为正确采集回速变、缓变信号提供保障。

  2.5存储电路设计

  此系统中,我们共有1路速变模拟信号,8路缓变模拟信号,4路数字信号。首先,对于单路速变信号而言,其最低采样频率为40kHz,系统要求的最低记录时间为0.75S此次设计中,用了一个模拟开关和一个AD7492循环进行数据采集,将1路速变信号和8路缓变信号交叉安排在ADG506上,这样在每次速变信号采集后,紧接着采集8路缓变信号,经过循环交叉采集后,便使得速变信号采样率是缓变信号采样率的8倍,所以速变信号采样率为8×12.5kHz≥40kHz。其次,对于8路缓变信号,其单路采样率为12.5kHz, 记录时间为0.75s,共8路。最后,存储4路数字信号。由于我们采用12路的AD采集,所以4路数字信号与AD产生的高4位信号合起来组成8位一起存入512K的SRAM 628512。因此不再单独占用空间。由以上分析我们可以得到存储容量为:M≥12.5kHz×8路×2×0.75+12.5kHz×8次×2×0.75=300kbyte。为了方便读数和数据分析,在每组数据前加上通道标志位,以区分是哪一路信号。为了确保存储空间,此次设计我们一共选用两块容量为512K的SRAM进行数据存储。AD转换和CPLD处理后的采集信号通过74LVC4245电平转换后送入SRAM进行存储。

  3 CPLD实现计算机异步串行通讯设计

  3.1异步串行通信的帧格式

  在异步串行通信中,数据位是以字符为传送单位,数据位的前、后要有起始位、停止位,另外可以在停止位的前面加上一个比特位(bit)的校验位。其帧格式仍然采用1位开始位+8位数据位+1位停止位.如图2所示。此次设计中没有奇偶效验位。停止位,为逻辑1,总在每一帧的末尾。此次设计中停止位为1位。
 

 

图2 串行异步通讯的帧格式


  3.2异步串行通信的波特率

  串行口每秒发送或接收数据的位数为波特率。若发送或接收一位数据需要时间为t,则波特率为1/ t,相应的发送或接收时钟为1/t Hz。发送和接收设备的波特率应该设置成一致,如果两者的波特率不一致,将会出现校验错或者帧错。要产生9600b/s波特率,要有一个不低于9600 Hz的时钟才可以。为产生高精度的时钟,我们专门选取48M的晶振,通过5000分频,最终频率为48M/5000=9600BIT/S

  3.3发送程序设计

  根据采用的帧格式,需要发送的数据为10位(1位开始位、8位数据位、1位停止位),在发送完这10位后,就应该停止发送,并使发送端电平处于逻辑1,然后等候下次的发送。发送电路一共有3个并行进程如图3所示,进程1产生9600bps波特率,使系统能够以9600的波特率发送帧。进程2中,当允许写信号WR下降延时,发送完成标志位tdEmpty变为低电平,开始接受并行数据,并将数据放入锁存器锁存。当写允许WR标上升延时,发送完成标志位变为高。进程3,将放入锁存器中的并行数据并串转换,并依照帧格式,将10位数据,在TXD引脚上以9600波特率,串行输出经过串口芯片MAX232电平转换后实现与计算机正常通讯。

图3 发送模块时序图


  3.4接收程序设计

  接收电路比发送电路要复杂,接收电路要实时检测起始位的到来,一旦检测到起始位到,就要将这一帧数据接收下来。接受电路一共设计有三个并行进程如图4所示,其中进程1 负责产生9600bps波特率,使系统能够在9600的波特率与外界系统通讯。进程2 产生接收信号RXD的完成标志位,每次在接收到帧的起始位时,标志位RXDF变高,在完成接受数据后,标志位RXDF变低。进程3负责将RXD信号输入的10位串行数据,依照10位的帧格式,先去掉串口的接收起始位和接收结束位,取其中的8位有效数据,并将8位有效数据进行串并转换,变成并行数据后,由8位数据总线DATA0~DATA7并行输出。
 

图4 接收模块时序图


  4采集存储控制程序设计

  4.1采样主控程序设计:

  此次系统我们使用48M晶振,每路信号采样率不低于12.5khz,一共相当于16路模拟量,所以控制点为48M ÷ (16 12.5khz)=240点,所以主控计数器中有240个计数点可以用于控制。在0~240个点中实现了通道选通、启动AD、帧计数、两次SRAM地址递推等工作。每次循环结束后,系统主控计数器清零,反复循环采集。具体细节如图5所示。
 

图5 控制程序的主控计数器及在其各个计数点时FPGA逻辑控制设计


  4.2 各个模块的设计

  在本设计中采用Altera公司EPM7064系列CPLD,程序使用VHDL语言编写,并在Quartus II环境下编译通过,程序主要有“采集模块”和“读数模块”。采集模块:在采集模块中,共有5个并行进程,其中在进程1中,首先在主控计数器COUNT=10时开始结合内部时钟COL信号来产生多路开关选通信号CNT,当COL=0时: CNT<=0000.COL=1时:CNT<=0001.以次类推一直到COL=15时选通15路后,进程1停止。在进程2中,当主控计数器COUNT在130和150区间内时,且内部计数器信号COL在0~15范围内,则开始打开AD,开始采集。在进程3中如果主控计数器COUNT=185~255时打开RAM的写入状态。在进程4中当主控制计数器count=200和220时,结合内部时钟信号COL,分别选择存入高4位、低8位或者帧计数。进程5:count=235递推帧标志位和ADG506(模拟开关)选通标志位,具体见图6所示。
 

图6 采集模块时序图


  读数模块:读数模块共分为3个并行进程:在进程1中,当时钟上升延时,且如果使能EN_R为高时,且电脑控制读数口CPUCLK=1时开始读数。在进程2中,读完一次数据后,将RAM地址递推一次。进程3中,如果系统为读数模块有效时,数据将通过CPLD发送到MAX232通过异步串行的方法将数据上传,具体见图7所示。
 

图7 读数模块时序图


  5 结束语

  本文对多路数据采集系统的组成原理、单元电路设计、接口电路设计和系统控制程序设计进行了详细的阐述,完成了多路信号数据采集系统软硬件设计。使系统工作安全可靠,数据采集精度较高,抗干扰能力较强。具有良好的应用前景和很高的使用价值。

关键字:采集器  硬件  多路  CPLD

编辑:金海 引用地址:http://www.eeworld.com.cn/mndz/2010/1222/article_2801.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
采集器
硬件
多路
CPLD

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved