基于网络分析仪提高低噪声放大器的测量精度

2010-01-21 20:21:48来源: 中国测控网

1. 低噪声放大器的特点和应用

    LNA主要用于微弱信号的放大,放大天线从空中接收到的微弱信号,降低噪声干扰,以供系统解调出所需的信息数据。对LNA的主要要求是:小的噪声系数(NF),即LNA本身产生的噪声功率小,噪声是限制微弱信号检测的基本因素, 任何微弱的信号理论上都可以经过LNA放大后被检测到,因此检测能力取决于信号噪声比;高的增益,具有较好平坦度的高增益不仅可以有效地放大信号,而且可以减小下级噪声的影响;大的动态范围,以给输入信号一个变化的范围而不产生失真;与信号源很好地匹配,在此LNA前端通常是射频无源滤波器,这种滤波器的传输特性对其负载敏感,因此需要有优异的输入输出反射损耗,另外LNA的非线性引起的三阶交调失真也是一个重要的指标。

    LNA广泛应用于微波通信、微波测量、雷达等接收系统,是接收机电路中的第一个有源电路,输入端接RF滤波器,输出端接镜像抑制滤波器或直接连接混频器,其主要功能是将来自天线的微伏级电压信号进行放大。作用距离远、覆盖范围大以及失真小等都已成为Radar, E/W, Satellite和GPS系统的普遍追求,这就对系统的接收灵敏度提出了更高的要求,我们知道,系统接收灵敏度的计算公式如下:

    由上式可见,在各种特定(带宽、解调S/N已定)的无线通讯系统中,能有效提高灵敏度的关键因素就是降低接收机的噪声系数NF,而决定接收机的噪声系数的关键部件就是处于接收机最前端的LNA,所以如何精准的测量LNA的各种指标参数是尤为重要的。

2. 校准原理

    校准的目的是为了消除测试系统中存在的系统误差。必须认识到校准本身也是一种测试过程,即用网络分析仪对已知高精度参数的标准校准件进行测量,网络分析仪测试的结果与系统中存储的校准件参数数据进行比对,两组数据之间必然存在误差,这些误差是由于网络分析仪的系统误差所引起,从而获取网络分析仪的系统误差。这些误差在后续的测量过程中将被消除掉,最终得到被测器件的测量结果。

    校准的基本类型有单端口校准,双端口校准,归一化校准还有今年刚刚推出的增强型响应校准(Enhanced Response Calibration)。对于放大器测量,我们常常需要测量正向增益,输入端损耗,输出端损耗和反向隔离度,因此需要双端口校准。双端口误差模型如下:


图1 前向误差模型

图2 反向误差模型

    以上12项系统误差,通过双端口校准可以获得。校准后,对被测件进行测量,测量过程得到四个测量S参数S11m,S21m,S12m和S22m。基于图3所示的四个双端口误差修正公式,消除12项系统误差,最终计算出实际需要的被测件的四个S参数S11a,S21a,S12a和S22a。
 
图3 双端口校准误差修正公式
 

    图3四个公式简化为:

    S11a=f(S11m,S21m,S12m,S22m,E12) S21a= f(S11m,S21m,S12m,S22m, E12)
    S22a=f(S11m,S21m,S12m,S22m,E12) S12a= f(S11m,S21m,S12m,S22m, E12)

注:E12代表12项系统误差,S参数下标a为Actual实际值, m为Measure测量值。

    结论:每个实际S参数是四个测试S参数和12项系统误差的函数。因此,要想获得高精度的S参数测量结果,必须保证四个测试S参数的测量精度和12项系统误差的准确度。

3. 网络分析仪系统结构

    要想获取高精度的测量结果,必须非常清楚地理解网络分析仪的系统结构。安捷伦最新的网络分析仪PNA-X的系统结构如图4所示

 

图4 网络分析仪的结构图

    前向测量时,B为测试接收机,A为反射接收机,R1为参考接收机;反向测量时,A为测试接收机,B为反射接收机,R2为参考接收机。两个35dB衰减器为接收机衰减器,用来避免大功率使接收机压缩;两个65dB衰减器为前向和反向源衰减器,改变端口输出功率范围。对应每个端口在后面板都有一个Bias-T直流偏指输入口,对放大器提供直流信号。

    四个S参数定义如下:

    前向:S11=A/R1,S21=B/R1 反向:S22=B/R2,S12=A/R2

4. 传统校准与测试

    假设低噪声放大器的输入电平要求为-60dBm, 反向隔离度为40dB,工作频段从1.8 GHz到2.0 GHz。

    一般情况下,工程师设置网络分析仪:起始频率为1.8 GHz,终止频率为2.0 GHz,功率为-60 dBm,中频带宽为10kHz。完成设置后,按图5所示连接电子校准件(也可以使用机械校准件)进行双端口校准。然后按图6所示连接放大器,进行测量,测试结果如图7所示。可以看出,测试结果抖动非常大,出现了毛刺,这是实际应用中所不能接受的。

 

图7 优化前测量结果

5. 对传统测试中存在问题的分析及解决方案

1) 校准功率电平比较低

    校准是获取高精度测量结果的先决条件,如果校准精度差,绝对不可能得到比较高的测量精度,因此必须尽可能提高校准的精度。上面谈到校准本身也是一种测量过程,即用标准校准件测量网络分析仪自身系统误差。

    安捷伦PNA-X内部信号源的功率范围从-30dBm到+13dBm或更高(最大功率输出取决于频段),由于PNA-X有65dB的源衰减器,因此功率电平最低可以到-95dBm。如果手动设置衰减器为30dB, PNA-X源的输出功率范围为从-60dBm到-17dBm。

    使用网络分析仪非常重要的一点,如果网络分析仪衰减器不变,校准后,改变功率大小,基本上不影响测量精度。因此校准时,功率可以设置为-20dBm而不是-60dBm,这样可以提高校准精度。校准完成后,把功率设置为-60dBm,以便于满足LNA的测试条件。

    完成双端口校准后,直通连接。功率为-60dBm与-20dBm的校准误差对比如图8所示。


图8 功率不同时校准误差对比

2) PNA-X端口2输出功率较低

    PNA-X缺省模式下,端口1与端口2功率为耦合状态,因此端口2的输出功率也为-60dBm。由于校准为2端口校准,即使屏幕上不测试S12隔离度,网络分析仪后台也在测量S12,因为根据图3的公式或简化公式,放大器S21a需要S12m。网络分析仪在测试S12m时,由于端口2输出电平为-60dBm和隔离为40dB,到达端口1的功率为-100dBm,再经过端口1定向耦合器的15dB衰减的耦合壁到达A接收机的功率为-115dBm。-115dBm接近接收机的低噪,因此S12m的测量精度非常差,从而导致四个实际S参数的测试精度非常差。

    网络分析仪的两个端口功率可以设置为非耦合状态,也就是端口2的功率可以与端口1的功率设置不一样。我们可以设置端口1输出功率-60dBm,端口2输出功率0dBm,这样可以保证S12m的测量精度, 从而使得4个S参数测量精度大大提高。

3) 校准时中频带宽值较大

    由于校准是为了获得网络分析仪的系统误差,因此校准时,中频带宽建议设置为100Hz,完成校准后,为了提高测试速度,可以把中频带宽提高到10kHz或1kHz,这样的改变并不会明显改变校准的状态和影响测试结果。

    解决上面三个问题后,重新进行校准和测量,测量结果如图9所示,可以看出抖动和毛刺现象不见了,测量结果比较理想。


图9 优化后测量结果

6. 总结

    现代的LNA设计指标越来越好,优异的LNA性能对传统的参数测量方法提出了很大挑战,但是通过合理地设置网络分析仪以及优化校准过程,可以获得较高的测量精度。

关键字:矢量网络分析仪  低噪声放大器  S参数  测量精度

编辑:金海 引用地址:http://www.eeworld.com.cn/mndz/2010/0121/article_2017.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
矢量网络分析仪
低噪声放大器
S参数
测量精度

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved