峰值采样电路在涡轮叶片温度检测系统中的应用

2009-12-15 20:54:29来源: 电子设计工程

  1 引言

  随着航天航空、汽车制造业的发展,为提高发动机的功率和推力,需要尽可能提高涡轮入口温度,进而关系到涡轮叶片工作时的表面温度。目前国外新型的航空燃气涡轮发动机涡轮前的温度已达到1 811~2 144 K,炽热的燃气直接与涡轮叶片接触,涡轮叶片需承受很高的热负荷,然而,涡轮人口温度受叶片材料限制,金属材料的强度随温度的升高而降低,因此不允许涡轮叶片在超温状态下工作,所以需要精确而快速地实时监测涡轮叶片温度。

  2 峰值采样电路原理

  涡轮叶片的温度场表现为沿叶片弦向中间高、两边低的曲线形式,如图1所示。

涡轮叶片的温度场表现为沿叶片弦向中间高

  涡轮叶片高速旋转,可将其弦向温度曲线近似看作正弦曲线。为准确找出每个叶片温度的最大值,可仅在温度信号到达峰值的瞬间对其采样,得到温度最大值,这种方法称为峰值采样。因为在一个周期内只采样一次(在峰值点),并直接得到温度最大值,无需复杂运算,所以峰值采样速度较快。

  3 峰值采样电路设计

  峰值采样电路通常由采样/保持器和比较器组成。如图2所示。LF398是采样/保持器,CMP是比较器,CAP是保持电容。当Vi>Vo时,V1为高电平,并控制LF398采样;当经过峰值后,Vi

峰值采样电路通常由采样

  实验证明此电路应用于被测信号小于10 kHz的系统效果较好,由于被测温度信号在30 kHz以上。频率较高。该峰值采样电路已不再适用,主要原因一是其保持时间太短,要求A/D转换器转换速度快,改用高速A/D转换器又不经济:二是对于峰值时刻与控制脉冲跳变时刻的偏移无法调节。这种电路用于较低频率(10 kHz以下)系统效果较好,但随着频率的升高,偏移就越大。

  基于以上原因,对该电路进行改进,给出一种由集成和分立元件组合的跨导型峰值采样电路,如图3所示。

由集成和分立元件组合的跨导型峰值采样电路

  图3中,G是跨导运算放大器,B是跟随器,CAP是保持电容。峰值采样利用二极管的单向导电性和电容器的存储作用构成的,当脉冲信号到来时,如果模拟输入信号的幅度Vi大于A2的输出幅度,则A1输出高电平,并通过二极管对电容器CAP充电。只有当A2的输出上升到和模拟输入值相等时,A1的输出为低电平,则CAP才停止通电。这时电容CAP将保持输入电压值。

  针对电压型峰值采样电路的缺点,提出由跨导运算放大器代替电压型中的一般运算放大器。

  跨导运算放大器又称“OTA”。由场效应管构成,具有输入电阻高、噪声小、功耗低、没有二次击穿现象、动态范围大的特点。它将电压输入变为电流输出,并通过外加偏压控制运算放大器的工作电流。使其输出电流在较大的范围内变化,具有电流输出范围宽、转换速率高等特点,且无需外接电流源提供静态回路。利用高速比较器直接比较保持信号与输入脉冲来产生峰值信号。

  4 电路分析及讨论

  对于跨导运算放大器的输出电流有:

公式

  式中,g为跨导,当在峰值电压时,vi-vo。趋向于零,电流i也趋向于零,即在tL(回路时间,指信号从输入到反馈回来的时间)的时间内,电流i由最大向零变化。过冲也随之变小。

  同样,计算该电路的频率特性。

公式

  则系统电压转移函数为:

公式

  电路的转折频率为公式,此电路只有一个极点。

  由以上计算可知,跨导型峰值采样解决了电压型峰值采样的两个缺点,如图4所示,提高了峰值采样的性能。实际电路的调试结果也证明了这一点。CA3080是一种单片集成跨导运算放大器,具有电流输出范围宽、转换速率高等特点,且无需外接电流源提供静态回路。

电压型与跨导型波形比较简图

  具体电路如图5所示。图5电路中需注意C1值的选择,根据不同的通频带上限频率f所用的C1值是不同的。选择方法如下:

公式

跨导型峰值检测电路图

  对于跨导运算放大器CA3080,其输出最大电流时典型正向跨导为g=10 ms,在理想情况下,该电路的通频带极宽,主要原因在于OTA的输出阻抗极大(约107Ω),可近似认为其输出电流与负载无关。

  5 结束语

  该峰值采样电路线性较好,不会产生过冲,通过调节电容C1的值,可调节带宽。电路中的跟随器LM358N输入阻抗大,输出阻抗小,起到阻抗匹配的作用。而且无需增设温度补偿特性电路,使电路结构简单,易调试维护,可靠性和一致性较好。

关键字:涡轮叶片  峰值采样  跨导  仿真

编辑:金海 引用地址:http://www.eeworld.com.cn/mndz/2009/1215/article_1927.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
涡轮叶片
峰值采样
跨导
仿真

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved