基于新型共基质电子传输层的有机发光器件

2009-08-13 10:44:33来源: 半导体技术

  0 引言

  OLED具有驱动电压低、效率高、能实现大面积全色显示等优点,在平板显示领域引起广泛的关注,近年来成为国际上的研究热点。OLED要求材料本身性能好(热稳定性好且具有高的荧光效率),而且还要求载流子注入的平衡及易于注入和输运。Alq3为发绿光材料,其电子迁移率比通常的空穴传输材料TPD或NPB的空穴迁移率要小2个数量级。4,7一二苯基-1,10-邻二氮杂菲(Bphen)是一种新型的电子传输材料,其电子迁移率为3.9×10-4~5.2×10-4 cm2/Vs,是Alq3材料的200倍以上。使用Bphen作电子传输材料获得了许多性能优异的有机电致发光器件。在电子传输层材料中,掺杂Li、Cs等活泼金属,可以进一步提高材料的电子迁移能力,活泼金属同有机分子间的化学作用。本文将8-羟基喹啉锂(Liq)与4,7-二苯基-1,10-邻二氮杂菲(Bphen)按一定比例混合,组成混合电子传输层。实验表明,混合电子传输层能够有效增强电子注入和输入,显著提高了器件效率。

  1 实验

  把氧化铟锡(ITO)玻璃衬底经清洗及等离子体处理后放入1.33×10-4Pa的真空室内,相继蒸发空穴注入层、空穴传输层、发光层、电子传输层及电子注入层,然后制作金属电极,其中混合电子传输层采用双源蒸发的方法,最后器件密封测量。器件的亮度一电压、电流.电压特性用Keithley 2400测试仪及LSll0型亮度计组成的测试系统进行测量。图1是本实验所用的主要有机材料分子结构及器件结构示意图。

本实验所用的主要有机材料分子结构及器件结构示意图

  2 结果与讨论

  2.1 Bphen:x%Liq层的电子传输特性研究

  为了考察Bphen:x%Liq的电子注入与传输能力,首先制备了结构为ITO/BCP(10 nm)/Bphen:x%Liq(80 nm)/LiF(1 nnl)/Al(120 nm)的单载流子器件。从图2可见,在Bphen中掺入一定比例的Liq后,电子传输性能有了显著提高,掺杂质量分数较低时,随质量分数的增加,其电子传输能力也逐渐提高,掺杂质量分数为33%时,导电性能最好,进一步增加Liq的含量,电子传输性能反而下降。驱动电压为8 V时,Liq掺杂质量分数为0%、20%、33%、50%的单电子器件的电流密度分别为:74.6、202、260、169 mA/cm2。

单电子器件的电流-电压关系曲线

  2.2 器件性能

  由上面的分析可知,当Liq的掺杂质量分数为33%时,混合层具有最高的导电能力,用其做为电子传输层,可以提高电子的注入效率,进而降低器件的驱动电压,提高发光效率。因此,本文以Liq(33%):Bphen做电子传输层,以检验其对器件性能的影响,并与纯Bphen的器件作对比。采用的器件结构为:

  cell—EBL:ITO/m-MTDATA/NPB/Alq3/Liq(33%):Bphen/LiF/A1

  cell-EB:ITO/m—MTDATA/NPB/Alqa/Bphen/LiF/A1

  图3为器件的电流密度-电压和亮度-电流密度特性曲线。很容易看到,基于混合基质的电子传输层,能有效提高电子注入。20 mA/cm2电流下,器件cell-EBL和cell-EB的驱动电压分别为4.6、5.2 V,二者的亮度分别为984 cd/m2和930 cd/m2。也就是说在20 mA/cm2电流下,引入Liq(33%):Bphen的混合层作电子传输层,使工作电压下降了0.6 V,而亮度却增加了6%。

器件的电流密度-电压和亮度-电流密度特性曲线

  其次,OLED器件的发光效率也呈现相同的规律,图4是器件的效率-电流密度关系曲线(插图是器件的流明效率-电流密度关系曲线)。由图4可知,器件cell-EBL的效率明显高于器件cell-EB。20 mK/cm2电流下,器件cell-EBL的电流效率和流明效率分别为4.9 cd/A和3.33 lm/W,而器件cell-EB的电流效率和流明效率分别为4.6 cd/A、2.76 lm/W。也就是说在20 mA/cm2电流下,引入Liq(33%):Bphen的混合层作电子传输层,使器件的电流效率和流明效率分别增加了7%和21%。同时,随着电流密度的增加,器件cell-EBL的电流效率降低很缓慢,尽管输入器件的电流密度不断提高,器件的发光效率却始终维持在4.8 cd/A左右,混合电子传输层的电子迁移率随电场的变化很小,非常稳定,这在有机电致发光器件中具有突出的意义。

器件的效率-电流密度关系曲线

  3 结论

  当Liq的掺杂质量分数为33%时,Liq:Bphen的混合层具有最高的导电能力,用其做为电子传输层,可以提高电子的注入效率,进而降低器件的驱动电压,提高发光效率。基于共基质电子传输层的器件驱动电压比传统器件降低了13%,器件的电流效率和流明效率分别增加了7%和21%。同时,随着电流密度的增加,器件的电流效率降低很缓慢,尽管输入器件的电流密度不断提高,器件的发光效率却始终维持在4.8 cd/A左右,可见,混合电子传输层的电子迁移率随电场的变化很小,非常稳定,这在有机电致发光器件中具有重要的意义。

关键字:有机发光器件  电子传输  传导率

编辑:金海 引用地址:http://www.eeworld.com.cn/mndz/2009/0813/article_1649.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
有机发光器件
电子传输
传导率

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved