基于DDS的频谱分析仪的设计与应用

2009-02-11 09:08:11来源: 国外电子元器件

      1 引言

  直接数字频率合成(DDS)是近几年一种新型的频率合成法,其具有频率切换速度快,频率分辨率高,以及便于集成等优点。在此,设计了基于DDS的频谱分析仪,该频谱分析仪依据外差原理,被测信号与本征频率混频,实现信号的频谱分析。

  2 系统设计

  图1给出系统设计框图,主要由本机振荡电路、混频电路、放大检波电路、频谱输出显示电路等组成。通过单片机现场可编程门阵列(FPGA)共同控制AD985l,以产生正弦扫频输出信号,然后经滤波、程控放大得到稳定输出,与经放大处理的被测信号混频,再经放大、滤波、检波后,由MAXl97采集,并送至单片机处理,最后由示波器显示频谱图像和液晶显示相关信息。

  振荡电路采用DDS器件AD9851,只需少量的外围器件即可构成完整的信号源,且具有转换速度快,分辨率高,换频速度快,频带宽,控制方便,信号稳定等特点。

  混频电路采用模拟乘法器集成器件AD835,其输入的差分电压不大于2 Vpp,一3 dB带宽,250 MHz,外围电路简单,且调试方便。但缺点是输出偏置电压较高,其典型值为±25 mV,故后级需加隔直电路。

  滤波电路采用专用滤波器MAX274,其优点是易于实现。外围电路简单,便于设定滤波器的中心频率、增益、截止频率及带宽,并能根据不同需求设计不同类型、不同阶数的滤波器。由于混频电路分上下混频,若采用上混频,则需高频窄带滤波器,这很难实现。因此这里采用下混频,只需设置一个中频窄带滤波器即可。

  检波采用集成真有效值变换器件AD637,其测量信号有效值高达7 V,精度为0.5%,且外围电路简单,频带宽。

  3 理论分析与计算

  3.1 带通滤波器中心频率选择


  从频谱分辨率的角度看.中频带通滤波器的通带宽度越小越好,但因其输入为扫频信号,为了保证输出具有一定强度,窄带宽就要求低扫频速率,而低扫频速率在大范围扫频时就需较长的扫频时间,从而影响仪器的数据输出率。按照要求分率为1 kHz。所以选定窄带滤波器的带宽为500 Hz,中心频率约100 kHz,但考虑到采用MAX274设计滤波器的难度,将中心频率调至70 kHz。

  3.2 波形识别与中心频率判断

  等幅波形频率比较单一,其频谱也较简单,只有一条频谱线。如果调制信号为单音余弦波f(t)=cos(ωt),则AM调幅波的表达式为:

  式中:ma为调制指数;VCM为载波振幅。

  单音调频信号的频谱相对复杂,可设调制信号频率为fΩ;调制频偏为△f,则信号带宽近似为2△f;谱线间间隔为调制信号频率fΩ,而各个谱线的高度则由贝塞尔函数得到。△f反映调频波所占带宽,△f越大,占用的带宽也越大,但每根谱线的间隔是不变的。

  由图2可知,fΩ影响每根谱线之间的间隔,fΩ越小,频谱线的间隔也越小,频谱看起来越紧密;fΩ越大,频谱线间隔越大,频谱看起来则越稀松。但频谱占用带宽是不变的。


  根据不同波形的频谱特征进行识别,在得到一个最大幅值和对应的频率后,再在剩下的点中找出第2个最大值A2和对应频率f2,然后判断(f1+f2)/2对应点的幅值,若较大,则为调频波,(f1+f2)/2即为它的中心频率;若很小,则是调幅波或等幅波,f1则为中心频率。由于调幅波带宽为20kHz,只需判断(f1-20)或(f1+20)的点值,若很小,为等幅波,否则是调幅波。

  3.3 正弦电压有效值计算

  AD637的内部结构包括有源整流器(即绝对值电路)、平方/除法器、滤波放大器、独立缓冲放大器和偏置电路。其中,缓冲放大器既可用作输入缓冲,也可构成有源滤波器滤波,提高测量准确度。根据AD637数据资料所给出的真有效值的经验计算公式:

Vrms="Vin2/Vrms" (2)

  式中:Vin为输入电压;Vrms为输出电压有效值。

  测量其峰值系数高达10的信号时,采用AD637,其附加误差仅为l%,外围元件少,频带宽。有效值为200 mV的信号,一3 dB带宽为600 kHz:有效值为l V的信号,一3 dB带宽为8 MHz。同时,AD637可用dB表示输入信号电平,计算多种波形的有效值、平均值、均方值和绝对值。
4 硬件电路设计

  4.1 本机振荡电路

  AD985l内部含有高速、高性能的10位D/A转换器,可用作全数字编程控制的频率合成器。在外接精密参考频率源时,其产生频谱纯净、频率和相位可编程控制,且稳定的模拟正弦波。图3给出其系统功能原理框图。采用AD985l作为DDS信号源,产生所需扫频信号。为避免高频干扰,采用PCB板实现。

  由于AD985l产生的信号含有一定的高频谐波,因而可采用低通椭圆滤波器滤除高频分量。AD985l输出信号幅值不稳定,且不符合AD835的输入要求,因而采用AD603程控放大。AD603单片增益范围为一10~+30 dB,输入控制电压范围为0~1V,增益与控制电压的关系为Gain(dB)=40Vg+10。而AD603的输入控制电压由单片机通过D/A转换器提供。D/A转换器采用MAX5532。

  4.2 混频电路

  该系统采用AD835作为混频器,其输入信号是X1与Y1相乘后混频。X1,Y1的输人电压范围在一1~+l V较为合适,Vpp至少应大于50 mV。使用AD835混频时应注意输入混频器的信号中不能叠加直流分量。要使直流分量的频率为O,使得输出信号中有另一输入信号不能发挥混频器的作用。图4给出混频电路。

  4.3 带通滤波电路

  在确定带通滤波器的中心频率为70 kHz后,利用MAX274滤波器设计软件,以完成软件设计。图5为带通滤波器的设计。

  4.4 A/D转换器

  经AD637转换后的信号需再经MAXl97实现A/D转换,并送至控制系统处理。该系统设计采用8通道,12位MAXl97实现A/D转换。MAXl97的最小分辨精度可以达到5/4 096=1.22 mV,该器件一共有O~5V,0~10V,一5~+5 V,一lO~+10 V 4种量程.且外围电路简单。

  5 测试结果

  采用Tektronix数字示波器TDSl002和Agilent信号源33120A进行测试。表1为等幅波形测量值,表2为调幅信号测量值,表3为调频信号的测量值。由表1~表3可见,该系统具有识别调幅、调频和等幅波信号的功能。表4给出该系统实现中各性能的实测结果。


  6 结语

  该系统依据外差原理.采用单片机与FPGA相结合,实现频率范围为l~30 MHz信号的频谱分析。测试结果证明,系统稳定可靠,人机交互界面友好,操作简易方便。

关键字:DDS  频谱分析仪  现场可编程门阵列

编辑:王丕涛 引用地址:http://www.eeworld.com.cn/mndz/2009/0211/article_1335.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
DDS
频谱分析仪
现场可编程门阵列

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved