将ADC介接到高效能运算放大器的分析设计

2008-08-18 13:47:40来源: 中国电子网

  前言:一般而言,用来驱动现今高分辨率类比/数码转换器的电源都是拥有数百欧姆或以上的AC或DC负载。因此,一个具备有高输入阻抗(数百万欧姆)和低输出阻抗运算放大器便成为ADC驱动器输入的最佳选择。ADC驱动器可作为缓冲器和低通滤波器之应用,以减低系统的整体杂讯。

  随着讯号在电路板的布线和冗长电缆上传送,系统杂讯会积聚在讯号里,而一个差动ADC会拒绝任何看来像共模电压的讯号杂讯。相比起单端的讯号,采用差动讯号有好几个优点。首先,差动讯号可将ADC的动态范围增大一倍。其次,它可提供更佳的谐波失真效能。现今有几个方法可从一个双重运算放大器配置产生出差动讯号。其中一种方法是采用单端/差动转换技术,而另一种则需动用差动输入源。为了利用完全的ADC的动态范围,ADC的输入必须被驱动至满刻度的输入电压。

  本文将会讨论三种不同的ADC驱动器架构:单到单、单端到差动和差动到差动。主要目的是希望能扼要地提供一切用ADC介接高效能运算放大器的资料。

  讯号路径的必要组件

  以下会把讯号路径中的类比前端设计之几个组成部份一起讨论。典型讯号路径的类比前端包括有一个用来驱动ADC的运算放大器、一个RC滤波器、ADC和微控制器或数码讯号处理器(DSP)。

  

  图1:典型讯号路径的类比前端方块图

  现实世界中的输入源会带有不理想的阻抗,因此需依赖一个很低输出阻抗的缓冲放大器来驱动ADC的输入。然而,外置的RL-CL滤波器会作用为一个抗叠频滤波器,以帮助减低ADC驱动器的杂讯频宽,以及缓冲由ADC取样和保持电路所引致的充电瞬时。为了尽量减低输入电压的跌降,外置的并列电容(CL)必须比ADC的内置输入电容大10倍,而同时外置的串行电容(RL)亦必须够大以固定发生在运算放大器输出的相位延迟,从而维持电路的稳定性。对于大部份的应用而言,在运算放大器输出和ADC输入之间用一个串行隔离电阻来连接,都可以带来益处,因为这个串行电阻可有助限制运算放大器的输出电流,而为这个串行电阻选定数值是一项非常重要的工作。

  一个比较高的电阻值将会增加运算放大器的负载阻抗,从而改善运算放大器的整体谐波失真(THD)效能。可是,ADC通常都较喜欢以一个低阻抗的源来驱动。因此,必须为这个串行电阻找出最佳的数值,才能一同为运算放大器和ADC带来最佳的THD、SNR和SFDR效能。当把ADC连接到一个运算放大器时,最重要是了解将会影响到效能的规格。现今的ADC规格,例如是THD、SNR、设置时间和SFDR等,它们均对滤波、测量、视频和重现应用很关键。高效能运算放大器的设置时间、THD和杂讯效能必须比被驱动的ADC的效能更好,以确保系统的精确度以及将错误减至最低或甚至消除。

  在本文中, LMH6611或LMH6618单一运算放大器会被用来驱动单通道的ADC121S101 类比/数码转换器,而另一方面,LMH6612或LMH6619双重运算放大器会被用来驱动差动输入的ADC121S625或ADC121S705类比/数码转换器。这些放大器的应用范围相当广泛,特别适用于要求高速、低供电电流、低杂讯,以及需要驱动复杂ADC和视频负载的应用。

  运算放大器和ADC的重要规格

  在现实中,有些系统应用会要求低THD、低SFDR和宽阔动态范围(SNR),而另一些则可能要求高SNR,并且可能会牺牲THD和SFDR的效能来换取更佳的杂讯效能。

  对于运算放大器和ADC而言,杂讯都是一项很重要的规格。这里有三个主要影响ADC整体效能的杂讯来源:量化杂讯--是由ADC本身所产生的杂讯(尤其在较高的频率下),以及由应用电路所产生的杂讯。输入源的阻抗可影响运算放大器的杂讯效能。理论上,ADC的讯号与杂讯的比例(SNR)可用下列算式计算出来:

  

  算式中的N是ADC的分辨率。例如根据这条算式,一个12位的ADC便拥有74dB的SNR。可是,实际的SNR数值会大约是72dB。为获得更佳的SNR,ADC驱动器杂讯应该愈小愈好。LMH6611/LMH6612/LMH6618/LMH6619的低电压杂讯仅为10 nV/ 。

  运算放大器和ADC的整体设置时间必须在1 LSB之内,而LMH6618/LMH6619和LMH6611/LMH6612的0.01%设置时间分别为120ns和100ns。

  此外,ADC驱动器的THD必须低于ADC。LMH6618/LMH6619在2VPP输出和100 KHz输入频率时的SFDR为100dBc,而LMH6611/LMH6612在2VPP输出和1 MHz 输入频率时的SFDR则为90dBc。

  讯号/杂讯比和失真(SINAD)是一个参数,它结合了SNR和THD这两个规格。SINAD是指输出讯号的RMS值与所有其它低于时钟频率一半的光谱成份之RMS值之比例,这包括谐波但不包括DC,以及可凭下列算式从SNR和THR中计算出来:

  

  由于SINAD是将输入频率与所有不良频率成份作比较,所以它其实是ADC动态效能的一个整体性测量。以下的部份将会详细讨论三种不同的ADC驱动器架构。

  1. 单到单ADC驱动器

  这个架构有一个单端式输入源接驳到运算放大器的输入,然后此运算放大器的单端式输出会再接驳到ADC的单端式输入。仅仅10 nV/ 的低杂讯和130 MHz的宽阔频宽促使LMH6618成为驱动12位ADC121S101 500KSPS至1MSPS 类比/数码转换器的首选,这个ADC拥有一个具备内置取样和保持电路的逐次逼近架构(successive approximation architecture)。图2所示为一个驱动ADC121S101的LMH6618之原理图,所用的是具备有增益-1(反相)的二阶多重反馈配置。图中的反相配置比起非反相的为佳,原因是反相配置可提供更多的线性输出回应。表1列出LMH6611或LMH6618与ADC121S101组合后的效能资料。图3表示出在f = 200 KHz时的LMH6611和ADC121S101组合之FET绘图。ADC驱动器的500 KHz截止频率可从下列算式计算出来:

  

  运算放大器的增益由下列算式设定:

  

  

  图2:单到单ADC驱动器

  

  图3:单到单ADC驱动器的FET绘图

  

  表1:LMH6611/LMH6618与ADC121S101组合后的效能

  2. 单端到差动ADC驱动器

  图4中的单端到差动ADC驱动器采用了LMH6612双重运算放大器来缓冲一个单端源,以便驱动一个具备有差动输入的ADC。其中一个运算放大器会被配置成一个单位增益缓冲器,并负责驱动运算放大器U2的反相(IN-)输入和ADC121S625的非反相(IN+)输入。U2把输入讯号倒向并驱动ADC121S625的反相输入。U2的增益配置为+2,因此可在无需牺牲THD效能下减低杂讯。至于2.5V的共模电压会同时设立在两个运算放大器U1和U2的非反相输入。

  当0至VREF的单端输入讯号被AC耦合到运算放大器的非反相终端时,以及当每一个运算放大器的非反相终端在中标量2.5V下被偏压时,这种配置便可产生2.5Vpp的差动输出讯号。此外,两个输出RC抗叠频滤波器会同时使用在U1和U2的输出与ADC121S625的输入之间,以减轻来自输入源的不良高频杂讯之影响。每一个RC滤波器均具备有约22 MHz.的截止频率。图5表示出在f = 20 KHz时LMH6612和ADC121S625组合的FET绘图。

  

  图4:单端到差动ADC驱动器

  

  图5:单端到差动ADC驱动器的FET绘图

  

  表2:LMH6612/LMH6619与ADC121S625两个组合的效能资料

  3. 差动到差动ADC驱动器

  LMH6619双重运算放大器可以被配置成一个差动到差动的ADC驱动器,以便用来将一个差动源缓冲到一个差动输入ADC,正如图6所示。该差动到差动ADC驱动器可用两个单到单ADC驱动器组成。这些驱动器的每一个输出会接驳到差动ADC的个别输入。在这里每一个单到单ADC驱动器都采用相同的组件,并且配置成增益-1(反相)。

  

  图6:差动到差动ADC驱动器

  下表分别总结出LMH6612和LMH6619与ADC121S625和ADC121S705这四个组合的效能。表中同时包括有LMH6612和LMH6619分别在2个不同的频率下连接到两个ADC的资料。为了用尽ADC的整个动态范围,25VPP的最高输入会施加到ADC的输入。图7表示出在f = 20 KHz时LMH6612和ADC121S625组合的FET绘图。

  

  表3:LMH6612和LMH6619分别连接到ADC121S625和ADC121S70后的效能

  

  图7:差动到差动 ADC驱动器的FET绘图

  接地和电路板布局考虑

  将输入源接地连接到电源接地是非常重要的。对于上述每一个的ADC驱动器配置,当建立电阻器网络以确保差动输出拥有相同增益时,必须同时考虑讯号源的阻抗。例如,一个音频精确讯号产生器拥有22Ω的源阻抗,而电路板则有一个50Ω的终端,因此设计人员必须调节增益和输入,以便能在运算放大器的输出处获取所需的讯号。

  为了获得最佳的高频效能,以下是一些电路板布局的建议:

  ·将ADC和放大器放置得愈接近愈好

  ·将供电旁路电容器尽量放近装置(距离少于1英寸)

  ·采用表面黏着而非穿孔式组件,以及采用接地和电源层

  ·尽量减少布线的长度

  ·为冗长布线采用终端式传输线

  

  图8:差动到差动ADC驱动器的电路板布局

  LMH6612/LMH6619只消耗仅6.5mA/2.5Ma的电流,相比起市面上大部份的全差动放大器少了超过20mA。采用LMH6611/LMH6612/LMH6618/LMH6619的主要优点是低功率和低成本。当中,LMH6611和LMH6612最适合使用在那些在奈奎斯特(Nyquist)频率20 KHz至2 MHz下运行的应用,而LMH6618和LMH6619则最适合使用在那些在奈奎斯特频率20 KHz至500 MHz下运行的应用。

  总括而言,本文涵盖了所有重要的考虑因素,包括外置RL-CL网络的选择以及运算放大器的关键参数:象是THD、设置时间和杂讯,这些都是在把高效能运算放大器连接到ADC时所必须考虑的参数。此外,本文还详细讨论了三种不同的ADC驱动器配置,并且在实验室进行了严谨的测试。最后,本文亦论及接地和电路板布局时需要注意的地方,从而改善系统的效能。

关键字:ADC  运算放大器  RC滤波器  奈奎斯特  RMS值  LMH  缓冲放大器  隔离电阻

编辑:孙树宾 引用地址:http://www.eeworld.com.cn/mndz/2008/0818/article_38.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
ADC
运算放大器
RC滤波器
奈奎斯特
RMS值
LMH
缓冲放大器
隔离电阻

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved