为什么人工智能还不能取代医生?这里有 5 个理由

2018-01-04 19:58:45编辑:鲁迪 关键字:人工智能  医生  诊疗服务

人工智能(Artificial Intelligence,AI)是人类开发出的,具有与人类似的智能的机器,也是互联网热点在近年来和医疗走得最近的一次。

有人担心,太过「聪明」的机器会让大量从事重复劳动的人「下岗」,比如目前在开发的影像或病理诊断 AI——这些开发者常常会用一些「比赛」来告诉大家,机器诊断的准确率比经验丰富的医生还高。

没必要太过担心,这儿有 5 个理由。

1、AI 无法判断适合用于诊断的样本

不管文献报道中 AI 诊断的准确率如何之高,也不管是乳腺癌、糖尿病还是皮肤癌,我们都不要忘记,AI 的学习过程中使用的训练样本(training set)和测试样本(test set)都是由专家提供的 [1-3]。

尤其是用于写文献和发表成果的 test set ——它们已经事先经过人类医学专家的审核,认为是适合用于目标领域疾病诊断的数据。但临床病例要复杂的多。如果没有事先确认,目前的 AI 自己根本不知道哪些切片应该用来进行乳腺癌淋巴结转移诊断。

由于疾病诊断 AI 目前没有公开使用的测试产品,不过,我们还有一个好玩儿的例子。

AppStore 有一款炙手可热的花卉识别 App,采用了非常前沿的深度学习,真可谓是 AI 在日常生活中的小试牛刀,果断下载体验了一把。

为了测试 AI 的智商,我很腹黑地上传了两张跟花卉没有关系的照片,一张是用粘土捏的圣诞花环,另一张是一个日本买的手办娃娃。


AI 非常自信地给出了判断,分别是蟹爪兰和蝴蝶兰!

你是不是觉得很好笑?

这个程序可能对花卉的图像识别效果很好,但是你发给她一张粘土照片或者手办照片,她依然会给出一个花卉的结果。

选择合适的数据是正确诊断的第一步,AI 输在了起跑线上。

2、AI  无法诊断「没见过」的疾病

AI 的诊断效果除了算法的影响,很大程度上还取决于用于 training 的数据。

我们暂且抛开大量 training 素材的可及性和伦理问题,相信这些问题的解决只是时间问题。

最重要的一点是 AI 无法诊断 training 中不包含的疾病类型,或者新的关联类型。

比如,发病率比较低的疾病,这些疾病的档案本来就很少,training 素材中可能没有包含或者只有少数几例。那么,AI 在实际诊断中就会发生误判。

再比如,有些病征可能过去一直只跟疾病 A 相关,但最近出现这些病征跟疾病 B 相关的情况越来越多。这时,目前的 AI 依然只会按照过去学习到的规则来诊断。

AI 也许速度很快效率很高,但她非常死板,这绝不是一名优秀的医生应该具备的素质。

不过,随着技术发展和资本推动,中国的医疗 AI 研究必然会打破目前各种疾病诊断领域独自开发的现状,这也让 AI 识别和选择正确的数据成为可能。

3、停留在表面的 AI 诊断

AI 的诊断原理跟医生有本质区别,AI 经常只是停留在表面,而医生能够深入本质。

医生的诊断并不是基于表面的图形,图形只是疾病的一种表象。但是,图像识别 AI 是完完全全地基于这些表象,因为她没有办法理性思考。

真实的医疗过程中存在大量表面上很相似,但实质上大相径庭的案例,这就超出了 AI 的能力范围。但可怕的是 AI 并不知道自己的能力边界,她还是会机械地按照程序员写好的代码进行计算,并给出错误的结果。

在 Bejnordi et al.的研究中我们看到,人类医生只要给予合理的时间,诊断的准确率和 AI 不相上下,但在医疗资源紧张、医生负荷沉重的情况下(比如 2 小时鉴定 129 张病理切片)会有更高比例的病例被误判为阴性,但不管时间是否充裕,人类医生诊断的假阳性率始终是非常低的。而 AI 正好相反,虽然诊断的准确率比较理想,但假阳性率较高,并且算法容许更多假阳性时灵敏度更好 [1]。在 Litjens et al.的报道中,深度学习算法的灵敏度达到了 100%,但假阳性率也高达 40% [5]。

随便举个例子,比如,我上传给花卉识别 AI 一张长筒花的照片,她其实并不认识长筒花,但因为长筒花跟非洲凌霄的花有些类似,所以她很自信地给出非洲凌霄的诊断结果。


长筒花被错误地识别成非洲凌霄

真的放心让专注表象十年的 AI 给你看病吗?

4、AI 无法根据实际调整诊疗方案

AI 在可以标准化或量化的数据处理中强于人类,但医生看病并不仅仅是诊断这么简单,医生的目的是要把病人治好。

为了达到这个目的,医生需要根据患者病情的发展,并发症的情况,身体情况,经济条件给出最优的治疗方案,这个复杂的过程需要的不仅是专业知识,还有经验和智慧 [6]。

你也许会说 Alpha go 和 Zero 不是很有智慧吗?那是因为围棋只是一个游戏,规则清晰,地盘有限,计算机可以左右手互搏赚取经验。在真实世界里,医疗行业日新月异,影响医疗结果的因素众多,受到新技术、新政策、疾病的分布变化等等因素的影响,有那么多「小白鼠」供 AI 练习吗?我们甚至没有一个能够模拟人体在各种疾病和治疗下会有如何改变的模拟器。

AI 能否在实际医疗场景中的提高医疗质量,还有待更严谨的前瞻性研究的证实。

5、AI 无法自己发现新的方法

最后一点也最为重要:医学不是一成不变的科学,医学每天都在进步,每天都在面临新的挑战,诊断标准与诊疗方案也需要与时俱进。而 AI 不能自己给自己建立新的诊断标准,更不能从新的病例中发现新的方法。

AI 的强项在于数据的收集和分析,在有足够多的医疗样本后,AI 也许会对诊疗指南有自己的看法。

但是每个医生都知道,新术式、新治疗方案、新药使用和尝试,甚至是面对新的疾病,都是临床实际工作中的一部分。在目前,推进医学进步的重任唯有人类医生可以担当。

结束语

AI,愿你在这盛世能成为一名合格的仆从,帮助医生完成一些简单重复的劳动,让我们的医生不再那么辛苦,可以有更多的时间更充沛的精力来做重要的事情、帮助更多。


关键字:人工智能  医生  诊疗服务

来源: 丁香园(微信号 dingxiangwang) 引用地址:http://www.eeworld.com.cn/medical_electronics/article_201801048369.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:用MEMS芯片找到控制心脏病的方法
下一篇:胶囊机器人敲开智慧医疗大门

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

AI赋能制造业 详解联想系人工智能领域投资策略

在人工智能项目国际交流研讨会上,联想控股旗下的两大投资机构——联想之星和君联资本分别分享了其在人工智能领域的投资策略。两家机构均植根于联想30余年来的创业经验和资源积累,区别在于联想之星是联想控股的早期投资和孵化板块,君联资本则重点投资于初创期和扩展期企业,同时兼顾种子期的项目。联想之星王明耀:从自发投资走向自觉投资截至2018年7月13号,联想之星刚好走过了整整十年。十年间,其投资重点专注于TMT、人工智能和医疗健康三大领域。在人工智能领域,联想之星的布局开始于2010年。从2010年到2012年期间,它投资了专注于虹膜识别的中科虹霸、人脸识别公司Face++等公司。这个阶段被联想之星总经理、主管合伙人王明耀称为“自发投资阶段
发表于 2018-07-23 19:01:40

定义智能家居新标准,人工智能与场景也该进来了

两种表述的语意,定义中描述的,以及我们通常所指的都是智能家居这一住宅环境,既包括单个住宅中的智能家居,也包括在房地产小区中实施的基于智能小区平台的智能家居项目,如深圳红树西岸智能家居。第二种语意是指智能家居系统产品,是由智能家居厂商生产、满足智能家居集成所需的主要功能的产品,这类产品应通过集成安装方式完成,因此完整的智能家居系统产品应是包括了硬件产品、软件产品、集成与安装服务、售后在内的一个完整服务过程。  9年多过去了,由于物联网、移动互联网、云计算、人工智能技术的快速发展,已经或正在极大地改变智能家居产业,因此,智能家居的定义需要进行适当修订,千家智客创始人向忠宏为此专门召集智能家居业界专家,包括中国室内装饰
发表于 2018-07-22 11:20:15
定义智能家居新标准,人工智能与场景也该进来了

人工智能会替代多少人力劳动?

一双眼睛的局部细节图出现在电脑屏幕上,小慧对着放大的眼睛,一步步地做好标记点。 一眼望过去,一排排的电脑屏幕上,都是类似的画面。也许是因为窗帘的遮光效果太好,略显昏暗的办公环境加上电脑屏幕上被放大的各种物体细节,颇为惊悚。 在某人工智能研究院看到这一幕,不觉惊叹即使是头部的AI创业公司,最关键的一环依然是从数据标注员开始的。 而这是一群被称作第一批被AI累死的人。 AI的老师:画框的这些人伴随着AI兴起的最关键的技术莫过于深度学习,作为深度学习的基础,神经网络是一种以输入为导向的算法,其结果的准确性取决于接近“无穷”量级的数据。 所以摒除那些复杂的中间环节,深度学习最关键的就是需要
发表于 2018-07-20 19:27:04

机器人进入安防市场,底气何在?

从1920年捷克作家雷尔·恰佩克的科幻小说《罗萨姆的机器人万能公司》中的"robot"一词开始,机器人就从单纯的文字变成了现实。 在现实生活中,以服务机器人为代表的机器人穿梭在人类世界的各个角落里,逐渐成为人类生活中不可缺少的部分。但也正因为诞生于科幻小说之中,人们对机器人一直充满着幻想,从工业机器人到扫地机器人,再到教育机器人和快递机器人,人类的双手正在扶持一个新行业的诞生——安防机器人。 从安防机器人谈起安防机器人又称安保机器人,是机器人行业的一个细分领域之一。 和其它服务机器人类似,安防机器人内置摄像头,GPS技术,机器视觉和语音交互等人工智能技术。但光从称呼出发,我们就能了解安防机器人
发表于 2018-07-20 19:25:44

AI不稳定,就业有风险,所以要招本科生?

上个礼拜,北京航空航天大学主办了国内首届人工智能本科专业研讨会。会上清华大学、南京大学、西安交通大学等国内26所大学共同发布了《关于设置人工智能专业建议书》,呼吁尽快设置本科人工智能专业。 毫无疑问,这个高考季当中,人工智能已经成为了一个热门话题。伴随着知名高校的呼吁,我们还可以看到各个名牌大学的人工智能学院、人工智能研究院如雨后春笋一样成长起来。中国科学院、南京大学、清华大学,都已经在一年内成立了类似研究机构。 而政策层面,国家《新一代人工智能发展规划》中也明确提出要建设人工智能学科。人工智能要发展,需要人才和学术建设应该是毫无争议的问题。  但关于人工智能是不是要在今天就成为本科专业
发表于 2018-07-20 19:22:43
AI不稳定,就业有风险,所以要招本科生?

人工智能会导致经济危机?

理论上来说,人工智能的普及,会带给整个人类社会极大的冲击,包括但不限于会有大量人失业,并由此引发经济危机。 伴随着人类社会的不断发展,人类社会面临的挑战从怎样克服物资不足,正逐渐转变成如何合理分配我们生产出来丰富物资。如果人类可以处理好这个问题,那么人类就有可能进入共产主义社会,整个社会按需分配,人们不再需要争夺资源,因为资源过剩。但是,如果人工智能被别有用心的人利用,整个人类社会陷入一场浩劫,一场巨大的动荡也不是不可能。 但是不管人类最后怎么处理人工智能带来的生产力飞跃,现有的经济运行模式一定会出问题。在人工智能普及的过程中,或者初步完成普及之后必然会出现一个极其容易出现经济危机的阶段——生产过剩/产能过剩
发表于 2018-07-20 19:22:09

小广播

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 医学成像 家庭消费 监护/遥测 植入式器材 临床设备 通用技术/产品 其他技术 综合资讯

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2018 EEWORLD.com.cn, Inc. All rights reserved