新型医疗电子芯片可复制神经肌肉接头

2016-09-05 19:53:48来源: 中国罕见病网 关键字:医疗电子芯片  生物技术  神经元

   麻省理工学院(MIT)工程师们开发出一种复制神经肌肉接头(神经和肌肉之间至关重要的连接)的微流控设备(microfluidic device)。该设备约有25美分硬币大小,包含单个肌条和一小组运动神经元。研究人员能够在逼真(现实)的三维基质中影响和观察两者之间的相互作用。

  研究人员对该设备中的神经元进行基因改造,使其对光照做出反应。通过将光照投射到(这些)神经元上,能够精确刺激这些细胞,发送信号激发肌肉纤维。研究人员还测量了设备内肌肉在被激发后抽搐或收缩的力量。

  复制神经肌肉接头的新型微流控设备。该设备包含一小群簇神经元(绿色)和单个肌肉纤维(红色)。

  下方的荧光图像显示了运动神经元跨越约1毫米的距离向肌条发出轴突。

  研究结果2016年8月3日在线发表于《Science Advances》期刊,可能帮助科学家们理解并识别药物以治疗肌萎缩侧索硬化(ALS,即卢伽雷氏症)和其他神经肌肉相关疾病。

  “神经肌肉接头涉及许多失能性疾病,其中有些是残酷而致命的,还有很多尚未被发现”领导该研究的MIT机械工程系研究生SebastienUzel说,“我们希望能够在体外形成神经肌肉接头,从而帮助我们理解某些疾病活动”。Sebastien Uzel现在是哈佛大学Wyss研究所博士后。

  

  自1970年代以来,科学家们已经提出了大量方法在实验室中模拟神经肌肉接头。这些实验大部分涉及在培养皿或小玻璃基板上生长肌肉和神经细胞。但这样的环境与(动物)体内状态相去甚远,在动物体内,肌肉和神经细胞存活于复杂的三维环境中,并且通常距离较远。

  “想想长颈鹿”Uzel说,“脊髓神经元所发出的轴突需要跨越非常大的距离才能与腿部肌肉连接。”

   为了在体外重建更逼真的神经肌肉接头,Uzel和同事们构造了一种微流控设备,该设备具有两个重要特性:1. 三维环境;2. 隔离肌肉和神经的隔间,从而模拟两者在人体内的自然分离状态。研究人员将肌肉和神经元细胞悬浮于隔间中,然后充满凝胶以模拟三维环境。

  为了生长肌肉纤维,研究团队使用了获得自小鼠的肌肉前体细胞,随后将其分化成肌肉细胞。他们将细胞注入微流控隔间,细胞会在隔间内生长并融合形成单个肌条。同样的,他们从干细胞分化出运动神经元,然后将所获得的神经细胞聚合体放置在第二个隔间中。在分化两种细胞之前,研究人员使用光遗传学(optogenetics)技术对神经细胞进行了基因改造。

  该研究共同作者、MIT机械和生物工程Ceciland Ida Green特聘教授Roger Kamm说:光“能够让你精确控制你想要激活的细胞”。在这样的狭小空间里,电极无法实现这一点。

  

  最后,研究人员为该设备添加了另一个特性:力传感。为了测量肌肉收缩,他们在肌肉细胞隔间内构造了两个微小的弹性支柱,位于肌肉纤维周围并能够被生长的肌肉纤维所包裹。随着肌肉收缩,支柱会被挤压在一起,形成位移,研究人员能够测量这些位移并转换为机械力。

  

  研究人员构造的微流控设备。将肌肉和神经元细胞悬浮于水凝胶,并注入到毫米尺寸的隔间中(蓝色细通道),随后从神经元/肌肉组织两侧分别提供培养基(蓝色大通道),模拟三维环境。

 

  在测试该设备的实验中,Uzel和同事们首次观察到神经元在三维区域内向肌肉纤维伸展轴突。在观察到轴突建立连接时,他们用微小的蓝光激射刺激神经元,并立即观察到肌肉收缩。

 “发射闪光,就能观察到抽搐”Kamm说道。

  根据这些实验,Kamm说,这种微流控设备可能作为神经肌病药物测试卓有成效的试验场,甚至可以根据个体患者进行定制。

  “你可能从ALS患者获得多能细胞,将它们分化成肌肉和神经细胞,并且为特定患者制造整个系统”Kamm说,“然后你能够根据需要多次复制,同时测试不同的药物或疗法的组合,查看哪种疗法能够最有效地改善神经和肌肉之间的连接。”

  另一方面,他说,该设备在“建模操作协议(modeling exercise protocols)”中可能是有用的。例如,通过以不同的频率刺激肌肉纤维,科学家们能够研究重复压力如何影响肌肉的性能。

 

  “现在,随着所有这些新型微流控方法的开发,你能够开始建立神经元和肌肉的更复杂的模型”Kamm说,“神经肌肉接头是另一个现在可以被纳入测试模式的单位”。

关键字:医疗电子芯片  生物技术  神经元

编辑:鲁迪 引用地址:http://www.eeworld.com.cn/medical_electronics/article_201609056822.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:我国医疗科技冲出国门 生物电子时代颠覆慢病治疗
下一篇:中国新兴行业有望跳跃进入数字医疗新模式

论坛活动 E手掌握
关注eeworld公众号
快捷获取更多信息
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
医疗电子芯片
生物技术
神经元

小广播

独家专题更多

迎接创新的黄金时代 无创想,不奇迹
迎接创新的黄金时代 无创想,不奇迹
​TE工程师帮助将不可能变成可能,通过技术突破,使世界更加清洁、安全和美好。
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 医学成像 家庭消费 监护/遥测 植入式器材 临床设备 通用技术/产品 其他技术 综合资讯

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2017 EEWORLD.com.cn, Inc. All rights reserved