datasheet

AI影像正在经历一场“盛世危机”,谁是真AI,谁是假泡沫?

2018-11-06来源: 智能相对论关键字:AI影像  医疗

AI影像领域正在发生一些怪现象。

据了解,2018年上半年AI影像仍然为医疗领域最热赛道,上半年融资数量达15起,融资金额13.1亿元,远高于文本挖掘与知识图谱、制药科技其余两个赛道。到目前为止,国内医疗影像AI公司就不下百家 ,其中活跃的就有推想科技、图玛深维、健培科技、体素科技、依图科技、深睿医疗、汇医慧影、视见医疗、华润万里云等。

但热闹的外表之下却是寒冰般的现实。据新京报“寻找中国创客”记者报道,在AI产品扎堆的影像领域,一个三甲医院可能同时安装10余家AI公司的产品,医生真正使用的只有一两家。国外也有类似的景象,比如,今年5月世界知名AI公司IBM Watson传出其医疗部门进行了大幅度裁员,裁员比例达50%至70%。

为什么这么多企业集中发力追的风口却没有被吹起来?

一、产业环境尚未成熟,应用落地还差临门一脚

说人工智能在医疗领域的应用已经成熟没人会信,尤其是AI影像在产业环境的成熟上表现的更为羸弱,这具体表现为3个方面:

1、产品效果存疑,病人隐私难保障。

对于AI影像相关的一些产品不少医生依然表示质疑。上海市儿童医院影像科主任杨秀军就曾说道,“我们每天有大概600~700个病例收录在PACS/RIS系统中,其中包括普放DR影像、CT影像、MRI影像及DSA影像等,这些数据暂时没有被二次开发,目前,仅满足我们的临床和会诊需求,包括查阅、调阅、教学、科研等。”“有很多软件拿过来展示,我一看就是JUST PLAY”。而上海市第一人民医院影像科主任王悍也表示,自己所在的科室没有使用任何人工智能影像产品,一是参观过使用人工智能产品的医院,并未发现产品能够提高医生的工作效率,反而会影响医生的诊断思路;二是病人的隐私得不到保障。对于数据安全,国家卫计委前副主任金小桃也曾表示,个人的健康医疗信息属于隐私保护范围,要依法严格管控保护,绝不能公开或泄露。

2、商业合作深度不够,合作仅仅停留在科研层面。

因为机器需要更多的学习次数,AI需要海量的数据和医生的结果判断来不断“喂食”,而现在最大的困难是:更多数据的积累。因为我国医院数据库的开放问题,医疗数据尚未实现互联互通,国内医疗影像数据应用还处于起步阶段,数据格式难以统一。众多医疗影像公司以科研的合作方式从医院获得影像数据,但是仅仅依靠几家医院影像数据远远不够,而且医院与医院之间的影像学数据因为医院层级的不同往往数据也有很大差异。以图玛深维医学科技有限公司为例,据IT时报报道,截至4月份,图玛深维已经与国内100多家大型三甲医院达成合作,但这种合作仍然停留在科研层面。

3、相关注册、准入、监管法律法规体系尚未形成,市场准入资格难获取。

虽然AI影像发展迅猛,但一直有个问题制约行业发展,那就是国内尚无一家公司获得医疗器械注册证。到目前为止,国家食药监总局给图玛深维、深睿、推想、点内等企业颁发了二类证,还没有出现获得三类证书的企业。也就是说,现在此类企业的产品仅具有辅助诊断功能,提供明确的诊断提示的产品需获得三类证,“小助手”类产品的需求自然远不及能够实际诊断的产品,最有价值的产品肯定还是在诊断环节。据IT时报黄峰表示,自己曾与一些AI+医疗影像创业公司的老总交流,了解到这些公司基本没有收入,更不用谈盈利。由于没有准入资格创业公司当前只能将产品作为科研项目拿到医院试用,现在盈利为时尚早。AI医疗作为全新产品之前并无审批此类产品的经验和标准数据库,医疗是一个严谨的行业,AI医疗产品还处于发展阶段,如果以医疗AI产品为主要业务的公司长期不能通过CFDA,公司发展必将出现问题。

商业变现之前,市场化还得面临四个问题

国内目前AI影像大部分集中在肺结节筛查这一块,主要通过图像识别进行阅片,从而标记出结节,减少医生阅片的时间。北大人民医院杜湘珂医生表示:“AI并不能完全代替医生,医生看病不仅仅看图这么简单,AI完成的仅仅是诊断环节中一部分的工作。同时,AI的盈利与消耗也是巨大的现实问题。”目前来看AI在影像科应用时确实出现了以下问题。

1、应用不达预期,医院与AI影像公司还需更多磨合。

据“新经济100人”报道,2017年1-2月推想科技的产品已经在武汉同济、上海长征、大连中山医院上线,而后续问题也在这一段时间集中暴露:虽然医院安装了推想科技的产品,但是打开率和使用率不高,很多医生不爱用甚至拒绝使用。部分医院影像中心的电脑系统和AI服务器不兼容,打开服务器非常慢,而且在阅片过程中经常出现卡顿,本来应该减少医生工作时间的AI似乎看上去并没有达到目的。

2、企业扎堆肺结节,AI在识别图片过程中标注的假阳性过高。

中国是肺癌大国,肺部影像数据充足,加上全球针对肺结节识别的研究最为成熟,因而大部分企业扎堆肺结节领域。AI测量显然是比医生肉眼观察测量要精准许多,然而目前AI仅仅作为肺结节辅助筛查系统,仍然需要医生进行二次审核。在Litjens et al.的报道中,深度学习算法的灵敏度达到了100%,但假阳性率也高达40%,由于部分肺与血管交界区域影像不是很清晰,系统容易识别为病灶,而这在临床学上是没有意义的。由于假阳性过高,医生在二次审核时花费的时间过长,不仅需要判断AI是否发生漏诊,还需要排除假阳性的存在,这样医生的使用意愿就变得很低,这不是替他们节约时间而是增加任务。

3、医生个性化差异大,使用习惯各不相同,拥抱AI or抵触AI,落地医院最终需要考虑“买单”问题。

AI医疗虽然是个风口,但是这次的合作单位跟以往企业不同,和医院合作更需要考虑到每个医生的感受,毕竟合作的主动权掌握在医院。虽然不少AI产品已经落地医院,但是初步效果并不佳,除了考虑到产品本身问题,还需要考虑到用户问题。图玛深维CEO钟昕曾表示医生群体中对于人工智能持三种态度:一部分接受与支持,认为人工智能会为医疗带来好的变革,这类人群以大医院的医生为主;另一部分排斥,部分医生认为人工智能带来的影响是好还是坏尚无法评判,因而对新技术的普及十分抵触;有些医生则是漠不关心,部分医生认为人工智能真正能顺畅地在临床实现应用并带来价值还很遥远,对于人工智能的普及持“事不关己高高挂起”的态度。尽管AI已经成为大趋势,但是合作伙伴的独特性让AI公司不得不考虑用户买单问题。

4、大医院人员较足,但对手竞争激烈医院选择权很大;而基层医院,设备落后人员短缺,成本过大付费意愿不强。

对于大型三甲知名医院,各大AI公司将它们作为在商业道路上最先抢占点。因为大型三甲医院患者数众多,数据样本大且多样化高,但是大医院每年进修、规陪人员众多,而且设备先进,使用的意愿没有那么强烈。在合作意愿上,大医院有更多的选择性,当然会选择性价比更高的AI公司。初创公司在与大医院的合作上会变得更加激烈,一些产品性能体验不佳的公司就会成为泡沫。而面对迫切需要AI来帮助医生减轻负担的基层医院,AI公司会考虑到数据较少,样本多样化不高,占领基层必然需要更大的人力资源,运营成本。而且初期面对价格较高的AI产品,基层医院收入不足,医院付费意愿不高。是先占领三甲还是面向基层是大部分初创公司正在面临的问题。

从目前来看,就肺结节领域来说,AI仅作为肺结节筛查的辅助工具,肺结节只是所有肺部疾病的一个小病种。而国内公开宣称进行AI肺结节筛查的公司就有几十家,想要在这个领域拿到准入资格,可想而知会面临一场激烈的竞争,离AI能成功盈利还有很长一段距离。

哪里才能开花结果?

智能相对论分析师易敏认为至少需要考虑三个方面。

1、快速抢占三甲还是走向基层?目前来看,三甲医院竞争异常火热,对于早先获得资本融资的公司有足够的资金当然选择抢占三甲医院。抢占大型三甲医院意味着获得更多的数据,三甲医院每日门诊量在2000~4000之间,患者人数众多意味着数据化的多样性,如果在大型三甲医院迅速占领了市场,意味着先在数据上向前迈了一大步。而相对来说,基层医院更需要,当前国内基层医院面临的问题是:医生紧缺,工作量大,设备老化,医生诊断率相对三甲医生要低。从上面这些问题分析,基层医院对AI影像有更迫切的需求,比如翼展科技在人工智能方面的探索便聚焦到基层医院,与昌都地区人民医院试点合作,它希望能在基层医院场景下快速实现人工智能诊断。

2、除了肺结节,AI影像还能去哪里发光发热? 目前国内推出的AI辅助诊断软件已经有多家,大多数AI公司都是从肺结节项目切入,对其他领域的研发相对较少。放射科和其他科室原本可以用AI项目解决的研发需求和临床需求都没有被满足。邵逸夫医院放射科表示,即使肺部筛查产品也没有做到尽善尽美,他们期待能够在甲状腺结节、乳腺结节、肝脏占位、前列腺等异常病变的筛查方向研发出更多的产品。由此可见医生们的需求很多,但是产品同质化严重,只有不断创新,让产品多样化,在更多领域找到突破口产品才会加速落地。

3、一旦CFDA落地,如何快速完成商业化?技术成熟后如何找准商业化模式,是众多AI初创公司需要认真探索的问题。对于西门子,GE这类型大型医疗设备公司,它们已经在医疗领域深耕多年,相对于初创公司,它们有更为成熟的营销模式,比如采用捆绑营销:向医疗器械厂商寻求合作,将软件与硬件设备捆绑销售,或将产品功能嵌入硬件设备当中。

当然,产品的多领域发展离不开最终哪些用户买单,如果全部分摊到患者头上无疑偏离了AI的初衷,而医疗机构为此付费意愿并不强烈,因此众人买单是更可行的一种商业模式。一方面可以面向体检中心以及第三方医学影像中心,出售软件的使用权限,或收取一定的服务费用;一方面费用可由患者支出(汇医慧影的电子胶片就是由患者买单。);而另一方面后期AI影像筛查系统确实给医生减轻不少负担,医院也是买单的客户;如果后期产品能够降低大病发生几率,减少医保开支,政府也可能是买单的对象。而对于最终各大公司会选择哪种方式“买单”目前仍在探索之中。

总之,AI影像正在经历一场“盛世危机”,谁是真AI,谁是假泡沫,只有经过市场验证,才能看出谁是那个没穿底裤的“裸泳者”。而对于多数创业项目来说,首先得保证方向对,才可能抵达终点,看到曙光。


关键字:AI影像  医疗

编辑:鲁迪 引用地址:http://www.eeworld.com.cn/medical_electronics/2018/ic-news11069081.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:布鲁克推重磅磁共振技术组合解决方案,助推新药研发上市步伐
下一篇:英国将投资5000万英镑建立5个AI数字病理学成像中心

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

韩国研发一套基于AI的医疗影像判读系统 诊断准确率比人类医生高近20%

韩国研究小组研发了一套基于AI的医疗影像判读系统,可以通过胸部X射线筛查肺癌等肺部疾病,诊断准确率比人类医生高近20%。首尔大学的专家和一家韩国软件公司组成的联合研究组日前发布了这套AI辅助诊断系统。系统可以筛查包括肺结节、肺结核、气胸等在内的4种胸部主要疾病。这4种疾病在全球范围内发病率和死亡率均高居前列。搭建该系统使用了包括4种肺部疾病X射线图像资料在内的共计9.8621万份胸部X射线图像资料,并经过首尔大学医院、法国格勒诺布尔(Grenoble)大学医院等多家韩国和国外医院的临床检验,平均诊断准确率达到97%以上。系统能够通过X光图像定位病灶位置。在一场AI系统同一组包括影像医学专业的专职医生在内的15名医生的比较评价中
发表于 2019-04-12
韩国研发一套基于AI的医疗影像判读系统 诊断准确率比人类医生高近20%

全球首例!临床影像应用AI治疗鼻咽肿瘤

近日,人工智能(AI)首次应用于核磁共振(MRI)影像,成功实现了鼻咽肿瘤影像的自动勾画,这是AI在全期别鼻咽癌放射治疗靶区影像勾画方面的首个研究。该研究项目由中山大学肿瘤防治中心(简称“中肿”)的孙颖教授团队与香港中文大学计算机科学和工程学系合作完成,相关成果发表在国际影像学顶级期刊《Radiology》。目前,该项研究的成果正在中肿开展临床试验。接下来,孙颖团队将陆续在广州、新加坡、广西等地开展临床验证,为世界鼻咽癌治疗贡献中国智慧。数据中寻找规律目前,治疗鼻咽癌的最主要手段是放射治疗。“放射治疗的照射不足将导致肿瘤复发,照射过度会增加放射性脑损伤、听力下降等后遗症。”孙颖指出。因此在CT或MRI影像上描绘准确肿瘤范围(勾画靶
发表于 2019-04-03

中国医学影像AI白皮书:最大问题是缺乏行业标准

AI在医学影像的应用快速发展,在技术和商业化上成果不断涌现。3月26日,中国医学影像AI产学研用创新联盟召集国内三甲医院的影像专家、科研专家和领先的AI医学公司共同起草的《中国医学影像AI白皮书》正式发布。报告调研人群为放射专业医生、影像AI相关研究人员和企业人员,采用公众平台普查、定向问卷调查形式,以了解中国医学影像AI产业的现状和需求。共调查了2135家医院、5142名医生,其中三级医院占比59%,二级医院占比38%;研究者120人。报告显示,中青年医生、高年资医生和放射科管理者普通更为关注AI技术,大多数医院AI研究院或成果转化部门缺失,只有1%的受访医院建立了AI研究部门;88%的医学影像AI产品集中在肺结节;医生在合作中
发表于 2019-03-28

精准诊断、优化流程:AI如何重塑医学影像领域

随着人们对人工智能技术的探索逐步深入,AI正在渐渐渗透到医疗影像行业的方方面面。毫不夸张地说,AI正在重塑医疗影像行业。据统计,单在美国,发力于医疗影像的AI初创企业已经超过110家。这其中的绝大多数公司都把精力放在了如何更精准地分析医学影像上。识别和分析影像特征是医学影像分析的关键一环,也是当前AI行业正致力于解决的问题。现在常用的医学影像检查有CT扫描、MRI扫描、X光、眼底成像、超声波等,这些都是广大医疗AI公司的着眼点。不久前,西门子医疗发布了一款配有AI助理的胸部CT扫描系统AI-Rad Companion Chest CT(这款产品也出现在了HIMSS19大会上),可以用于胸部多个器官的影像学检查;GE医疗也启动了一款
发表于 2019-03-05

智能医疗发展热度不断提升 医学影像AI技术已经走到行业最前端

随着信息时代的来临,人类生产生活的数据基础和信息环境有了大幅提升。最近几年人工智能技术出现爆炸性发展,人工智能技术应用在不同的行业中,涉及到交通,零售,医疗等诸多领域,人工智能也从专业智能迈向通用智能,为我们的生活带来种种便利。近年来,人们健康意识逐渐觉醒,人口老龄化问题不断加剧,智能医疗在国内外的发展热度不断提升,在《2018医疗大数据和人工智能产业报告》中显示,医学影像AI技术已经走到行业最前端。2月25日,日本奥林巴斯公布了医疗内窥镜领域的新技术成果。医疗内窥镜检查将导入AI技术,该技术为日本多个大学联合开发,可将检查画面数值化,能够快速精准的判断病人检查部位是否有病变、病变是否为恶性以及今后病变的可能性。据悉,人工智能
发表于 2019-03-01
智能医疗发展热度不断提升 医学影像AI技术已经走到行业最前端

九成医疗AI都在做影像,能有多少熬过今年

140余家从事医疗AI的企业,近120家在做医学影像业务,其中约百家企业布局于肺结节影像产品——八点健闻调研发现,看上去蓬勃发展、四面开花的中国医疗AI行业,跟很多新兴行业一样,同质化现象严重,只是非常有限地,挤在某些容易涉猎的领域里相互“追随”、彼此竞争。2018年被称为“医疗AI”落地之年。全国上千家三甲医院引入了了AI产品。但同质化、烧钱严重且尚未找到合理的营收模式,成为这个新兴行业的发展之痛。优胜劣汰是必然的结果。2019年,随着资本寒冬的到来,“烧钱”的医疗AI产品势必会经历一番“洗牌”。有钱烧的撑下去“再活三年”,没钱烧的关门歇业。AI,是Artificial Intelligence的英文缩写,谓之人工智能。基于人类
发表于 2019-02-01

小广播

最新视频课程更多

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 医学成像 家庭消费 监护/遥测 植入式器材 临床设备 通用技术/产品 其他技术 综合资讯

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD.com.cn, Inc. All rights reserved