利用高性能ADC打造新的磁共振成像发送/接收架构

2010-08-24 21:10:43来源: 互联网

      摘要:本文探讨了磁共振成像(MRI)系统的工作原理,系统利用氢原子在磁场作用下的运动形成清晰的医学图像。文中介绍了典型的磁场类型和当前高分辨率MRI系统所依赖的超导磁铁。本文还讨论了通过适当排列梯度线圈形成3D图像的过程以及它们与RF信号之间的相互作用,给出了MRI的系统原理框图。

概述

  磁共振成像(MRI)系统能够提供清晰的人体组织图像,系统检测并处理氢原子在强磁场中受到共振磁场激励脉冲的激发后所生成的信号。

  氢原子核的自旋运动决定了它自身的固有磁矩,在强磁场作用下,这些氢原子将定向排列。简单起见,可以把静态磁场中的氢原子核看作一条拉紧的绳子。原子核具有一个共振频率或“Larmor”频率,具体取决于本地磁场强度。如同一条绳索在外部张力作用下发生共振。在典型的1.5T MRI磁场中,氢原子的共振频率近似为64MHz。


  适当的磁共振激励或者是RF脉冲激励(频率等于氢原子核谐振频率)能够强制原子核磁矩部分或全部偏移到与作用磁场垂直的平面。停止激励后,原子核磁矩将恢复到静态磁场的状况。原子核在重新排列的过程中释放能量,发出共振频率(取决于场强)的RF信号,MRI成像系统对该信号进行检测并形成图像。

MRI成像系统原理框图


MRI成像系统原理框图

[1] [2] [3]

关键字:ADC  磁共振成像  MRI

编辑:鲁迪 引用地址:http://www.eeworld.com.cn/medical_electronics/2010/0824/article_1444.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
ADC
磁共振成像
MRI

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 医学成像 家庭消费 监护/遥测 植入式器材 临床设备 通用技术/产品 其他技术 综合资讯

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved