datasheet

基于DS18B20和nRF2401的库区测温网络无线传输系统

2016-10-05来源: eepw关键字:DS18B20  nRF2401  库区测温  网络无线传输
引言

库区温度直接关系到库存物资的安全与性能,目前库区温度数据的传输大多采用有线方式,存在布线难度大、材料成本高、维护检修不便等不足[1-2],并且数据线缆还易受雨雪、潮湿、鼠害等破坏。为克服此类弊端,本文采用nRF2401无线传输模块,结合1-Wire器件DS18B20,设计开发一款库区温度数据无线传输系统。

1 总体方案

系统分为上位机与下位机两大部分,二者之间的通信通过nRF2401实现,如图1所示。上位机主要包括PC机和上位单片机,其功能是负责接收下位机传送的温度数据和应用程序的运行,这一部分技术较为成熟,可借鉴的资料较多,不作为本文的重点;下位机采用51系列单片机AT89S51作为控制器,主要负责温度数据的采集、处理和传输,图1仅画出两组温度传感器和继电器,实际连接10组。本文将着重介绍其硬件电路和软件设计。



2 电路设计

下位机电路设计的重点是测温网络和无线传输模块的搭建,为实现多点测温,选用Dallas公司出品的DS18B20,构建一个1-Wire总线的测温网络。DS18B20是1-Wire总线的数字温度传感器,可直接将被测温度转化成串行数字信号供单片机处理,适用于恶劣环境的现场温度测量[3-4];无线传输模块选用新型单片射频收发器件nRF2401,该器件工作于2.4 GHz~2.5 GHz ISM频段,输出功率和通信频道可通过编程进行配置[5],同时,nRF2401功耗低,在以-6dBm的功率发射时,工作电流仅9mA,接收信号时,工作电流也仅12.3 mA,特别适合单片机应用场合[6-8]。

图2是市售nRF2401无线模块,设计上位机、下位机电路时,只需留出相应接口即可。

图3是设计的电路原理图,单片机P12口连接10个测温器件(图中仅画出3个),从而构建一个小型1-Wire总线测温网络,可实现10个库区的温度测量;单片机其他口线连接有10个继电器(图中画出2个),用来控制10个库区散热风扇的运转;无线模块nRF2401通过接口端子与单片机连接,此处注意nRF2401工作电压是3.3V,需增加电压转换芯片,为节省篇幅图中并未画出。

上位机接收部分的电路主要由上位单片机、无线模块接口和电平转换部分组成,这是由于nRF2401输出数据格式是TTL电平,而PC机串口是MAX232电平,为此需要增加一个电平转换电路进行匹配。

3 软件编程

下位机编程重点在于温度数据的采集与传送,也就是DS18B20和nRF2401的软件设计。

3.1 1-wire 总线的基本原理和操作
软件设计之前,首先要了解1-wire 总线的原理。1-wire总线的特点是用一条数据线同时传输时钟信号和数据,总线上每一个器件都有一个唯一的地址,包括48位的序列号、8位的家族码和8位的CRC码,主机对各器件的寻址依据这64位的ID码来进行。


为保证在一条数据线上实现双向通信,对DS18B20的操作必须遵循严格的读写时序[9]。以下介绍基于1-wire总线的几种典型操作,其余的1-wire总线命令都是由这些典型操作而来。

3.1.1 复位子函数

在复位与应答时序中,主机发出复位信号,要求1-wire器件在规定的时间内送回应答信号。

首先主机将总线拉低480μs,发出复位脉冲,然后产生一个上升沿的跳变,并延时60μs等待1-wire器件的应答;1-wire器件将总线拉低240μs,发出应答,主机收到应答后,再对DS18B20进行ROM命令。



3.1.2 读写操作

所有的读写时序至少需要60μs,在位读和位写时序中,主机要在规定的时间内读回或写出数据。

写时序时,主机在拉低总线15μs之内释放总线,并向1-wire器件写1;读时序时,主机发出读数据命令,产生读时序,1-wire器件随即向主机传输数据。

3.2 DS18B20的温度转换

DS18B20网络温度测量的步骤一般是:器件初始化、复位、ROM操作、温度转换。初始化及复位完成后,要对网络中的器件进行ROM识别,然后再读取温度数据。3.2.1 利用二叉树遍历算法进行器件识别

二叉树遍历算法是搜索识别网络中1-Wire器件的编程首选,二叉树遍历算法的要点可归纳为“读2位,写1位” [4]。

首先主机向从机发出搜索命令,等待从机向主机发回当前位之后,再读从机发回当前位的反码,这两个位数据的编码存在4种可能:00、01、10和11。

00表示从机在当前位上有位分叉,即0和1两个分支;

01表示从机的当前位均为0;
10表示从机的当前位均为1;
11表示总线上无器件响应。
显然,出现11时搜索应退出。

对于前3种情况,根据搜索策略,主机向从机写1位数据,决定继续搜索哪一分支。第2和第3种情况下,搜索仅有一个方向,如果是第1种情况即出现00时,需要选择下一步搜索路径,方法是比较搜索位所在位置和最后一次发生位差异的所在位置,若二者相等,搜索1分支,若前者>后者,搜索0分支,若前者[10];二是DS18B20中64位ID码标记为第1—64位,而不是0—63位,空出来的0用来表示差异位位置记录的初始状态。

3.2.2 温度数据的读取

转换完成后的温度数据由低8位和高8位组成,且低8位在前,需将其转换为1个16位的数,高5位代表符号,低11位是温度值。11位的温度值中高7位是温度整数,低4位是温度小数,如果是负温度,则从温度寄存器读出的是补码,应将补码取反加1得到原码。

需要注意,单片机发出读取温度寄存器命令后,DS18B20会返回9组数据,其中第一组数据的低4位代表温度的小数值,因此温度小数部分的精度为1/16=0.0625。另外程序中应增加延时函数,确保温度转换完成。

3.3 nRF2401程序设计要点

温度转换完成后,由nRF2401将数据发送给上位机,并接收上位机发出的指令,实现双向通信。

3.3.1 初始化配置与数据收发

nRF2401初始化配置包括设置待机模式、CRC校验、收发完成后中断响应、选择射频通道、设置数据传输率和发射功率。

nRF2401的CE管脚为0时处于待机模式,为1时处于收发模式,收发模式有ShockBurst模式和直接模式两种,本文选择速度较快、功耗较低的ShockBurst模式。                                
                
发送过程为:设置Config寄存器使器件处于发送模式,当测温节点有数据需要发送时,温度和地址数据送到nRF2401中,单片机将CE管脚置高,激活ShockBurst发送模式,完成数据打包并高速发送,然后等待中断。

接收过程为:设置Config寄存器使器件处于接收模式,单片机将CE管脚置高,激活ShockBurst接收模式,延时130μs后检测空中信息,若接收到有效的数据包,则发送确认信号,产生中断,同时读出有效数据并发送给单片机,单片机通过串口将数据发给PC机。



3.3.2 收发模式的自动识别设计

为简化编程,增强代码通用性,本文为上位单片机和下位单片机设计了完全相同的同一套程序代码,系统自动识别并设置工作模式,无需人为区分单片机是接收还是发送。实现接收和发送模式自动切换的代码如下:

void Switch_RT(uchar SW, uchar mode)
{ //收发模式切换子函数
CE=0; //待机
if(SW) //为1
SPI_WR_Reg(CONFIG, SPI_RD(CONFIG) & 0xfe); //发射模式
else //为0
SPI_WR_Reg(CONFIG, SPI_RD(CONFIG) | 0x01); //接收模式if(mode)
CE=1; //拉高CE启动收发
}

程序默认无线模块处于接收模式,下位单片机测得温度数据后,将Config寄存器的PRIM_RX位置0,控制nRF2401工作于发送模式,将数据打包发出,随即将PRIM_RX位置1,处于接收模式;上位机端nRF2401接收到数据包后,即由上位单片机将其读出并通过串口传给上位PC机。

PC机向下位机发送指令时,首先将指令发给上位单片机,上位单片机一旦接到指令,即将PRIM_RX位置0,控制nRF2401工作于发送模式,发出数据包;下位单片机通过nRF2401接收后将数据包读出执行。

4 系统运行情况

PC机应用程序采用Visual Studio2010 VB.net编写,上位单片机与PC机应用程序之间的通信通过串口控件实现,二者之间的参数设置需一致。



程序运行界面如图4所示,各库区温度正常时,温度值字体颜色正常,某库区温度超过正常值时,相应温度值字体以红色显示并闪烁,下位单片机自动接通对应库区继电器,启动散热风扇进行降温;当温度下降至正常值后,单片机控制继电器关断散热风扇,同时温度值字体颜色恢复正常。温度值右侧标签显示的数据是设定的正常温度范围。

“库区选择”组合框中有10个复选框,对应10个库区;按下“启动风扇”按钮可对所选库区进行强制通风;按下“关闭风扇”按钮可强制关闭散热风扇;按下“温度范围设定”按钮可对所选库区报警温度阈值进行设置;按下“保存数据”按钮可将库区编号、温度值、时间信息等保存至指定位置,便于查看分析。

5 结论

利用本文设计的无线传输系统,可以采集10个重要库所的温度数据,经过单片机的处理,将数据通过nRF2401传输给PC机显示。经实测证明,此无线传输方案能准确采集并传送温度数据,传送距离可达60米,空旷地带接近100米,既避免了繁琐的布线,又可有效防止恶劣天候的影响,采用元件少、简单易行、成本低廉、性能可靠、便于检修,是一种新颖实用的库区温度监控系统。

参考文献:
[1]刘斌.基于nRF2401和GPRS的无线温度传输系统设计[J].现代电子技术,2012;35(15):46-48
[2]王旭,马汝建,王洪斌. 基于nRF24E1的多点无线测温报警系统设计[J]. 济南大学学报(自然科学版),2013;27(4);352-357
[3]丁恩杰,踪晓志.基于nRF24E1和DS18B20的无线测温系统[J].仪表技术与传感器,2010;11(3);60-62
[4]李飞,沈玲,黄熹. 1-Wire总线测温网络的构建[J]. 电子产品世界,2012;(10);43-44
[5]孙保群,王琼. 基于nRF2401软件跳频协议的设计与实现[J].电子技术应用,2012;38(5);46-48,51
[6]郭吉术,林明星,刘伟,等. 基于nRF2401的无线扭矩监测系统[J].仪表技术与传感器,2012;(12);57-60
[7]朱嵘涛,徐爱钧,叶传涛. STC15单片机和nRF2401的无线门禁系统设计[J].单片机与嵌入式系统应用,2014;(6);57-60
[8]王晓峰,张致恒,张 波,等. 基于nRF2401的高速路不停车收费系统[J]. 电力学报,2009;24(5);431-433
[9]吕胜杰,霍淑艳. 基于DS18B20的单总线多点测温技术[J].现代电子技术,2011;34(2);185-187
[10]陈佳闻. 基于多点测温的温室智能控制系统设计[J].山东农业大学学报(自然科学版),2010;41(3);435-439

关键字:DS18B20  nRF2401  库区测温  网络无线传输

编辑:什么鱼 引用地址:http://www.eeworld.com.cn/mcu/article_2016100530089.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:把keilC51中不使用的代码禁止分配空间,为程序瘦身
下一篇:采用C8051F020的RS485串行通信电路设计

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

Dht11与Ds18b20温度传感器使用

使用MCU,STM32F103C8T6+OLED显示,板子自己手焊的。说说使用感想DS18B20不愧是大厂的传感器,功能丰富,但使用起来确实有点麻烦。DHT11应该就是国产模仿的吧,功能简单,没有唯一标识码,没有RAM,没有报警等等功能。对照手册编写逻辑代码问题不大,关键就是STM32 HAL库里面us延时的问题,我用的是模仿在hal_rcc.c里面的一个函数/**  * @brief  This function provides delay (in milliseconds) based on CPU cycles method.  * @param  mdelay: specifies
发表于 2019-04-08
Dht11与Ds18b20温度传感器使用

基于STM32的DS18B20驱动

#include "ds18b20.h"#include "delay.h" short tmp_arg; //温度平滑滤波//复位DS18B20void DS18B20_Rst(void)   {                 DS18B20_IO_OUT(); //SET PG11 OUTPUT    DS18B20_DQ_OUT=0; //拉低DQ    delay_us(750);     
发表于 2019-03-07

PIC16F877A DS18B20数字温度计实验

main.c#include <htc.h>#include <stdio.h>#include "def.h"#include "ds18b20.h" __CONFIG(0xFF32); void Delay_ms(u16 xms){  int i,j;  for(i=0;i<xms;i++)  { for(j=0;j<71;j++) ; }} void uart_init(void){    TXSTA=0x24; //开启发射使能位、高波特率,TRMT初始值
发表于 2019-01-31
PIC16F877A DS18B20数字温度计实验

基于DS18B20温度传感器和MQ2烟雾传感器的火灾报警器设计

一、概述火灾自动报警系统(Fire Alarm System,简称FAS系统)是人们为了早期发现通报火灾,并及时采取有效措施,控制和扑灭火灾,而设置在建筑物中或其它场所的一种自动消防设施,是人们同火灾作斗争的有力工具。  本设计中以温度探头和烟雾传感器作为火灾报警器的传感装置,并以LED和蜂鸣器作为示警装置。  二、功能  ●高温检测。传感器选用DS18B20,当环境温度大于40℃,高温报警指示灯亮,LCD1602第一行显示温度。  ●环境烟雾浓度检测。传感器选用MQ2烟雾传感器,AD0809作模数转换传烟雾浓度数据给单片机。当环境烟雾浓度大于50时,烟雾浓度指示灯亮,LCD1602第二行显示烟雾浓度。  当温度和烟雾浓度同时过高
发表于 2019-01-16
基于DS18B20温度传感器和MQ2烟雾传感器的火灾报警器设计

stm32 ds18b20 温度传感器

举例void DS18B20_in(){    GPIO_InitTypeDef gpio =     {        GPIO_Pin_11,        GPIO_Speed_50MHz,        GPIO_Mode_IPD    };      GPIO_Init(GPIOG, &gpio);}void DS18B20_out(){   
发表于 2019-01-04
stm32 ds18b20 温度传感器

STM8L 温度传感器DS18B20

#define DS18B20_GPIO_PORT  (GPIOC)#define DS18B20_GPIO_PIN   (GPIO_Pin_2)#define DS18B20_PIN_SET_OUT()   GPIO_Init(DS18B20_GPIO_PORT, (GPIO_Pin_TypeDef)DS18B20_GPIO_PIN, GPIO_Mode_Out_PP_High_Fast)#define DS18B20_PIN_SET_IN()    GPIO_Init(DS18B20_GPIO_PORT, (GPIO_Pin_TypeDef)DS18B20
发表于 2018-08-26

小广播

何立民专栏

单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD.com.cn, Inc. All rights reserved