datasheet

STM32学习笔记一一UCOSII(1)

2019-01-09来源: 互联网关键字:STM32  UCOSII(1)

1.简介


UCOSII 是一个可以基于 ROM 运行的、可裁减的、抢占式、实时多任务内核,具有高度可移植性,特别适合于微处理器和控制器,是和很多商业操作系统性能相当的实时操作系统(RTOS)。


1.1 UCOSII 体系结构图


UCOSII 的移植,我们只需要修改: os_cpu.h、 os_cpu_a.asm 和 os_cpu.c等三个文件。


os_cpu.h: 进行数据类型的定义,以及处理器相关代码和几个函数原型;


os_cpu_a.asm:是移植过程中需要汇编完成的一些函数,主要就是任务切换函数;


os_cpu.c:定义一些用户 HOOK 函数。


定时器的作用:为 UCOSII 提供系统时钟节拍,实现任务切换和任务延时等功能。这 

个时钟节拍由 OS_TICKS_PER_SEC(在 os_cfg.h 中定义)设置,一般我们设置UCOSII 的系统时钟节拍为 1ms~100ms,具体根据你所用处理器和使用需要来设置。本章,利用 STM32的 SYSTICK 定时器来提供 UCOSII 时钟节拍。


1.2 任务


任务:其实就是一个死循环函数,该函数实现一定的功能,一个工程可以有很多这样的任务(最多 255 个), UCOSII 对这些任务进行调度管理, 让这些任务可以并发工作(注意不是同时工作,并发只是各任务轮流占用 CPU,而不是同时占用,任何时候还是只有 1个任务能够占用 CPU), 这就是 UCOSII 最基本的功能。


Ucos 任务的一般格式为:


void MyTask (void *pdata)

{

任务准备工作…

While(1)//死循环

{ 任务 MyTask 实体代码;

OSTimeDlyHMSM(x,x,x,x);//调用任务延时函数,释放 cpu 控制权,

}

 }


1.3 任务优先级

ucos 中,每个任务都有唯一的一个优先级。优先级是任务的唯一标识。在 UCOSII中,使用 CPU 的时候,优先级高(数值小)的任务比优先级低的任务具有优先使用权,即任务就绪表中总是优先级最高的任务获得 CPU 使用权,只有高优先级的任务让出 CPU 使用权(比如延时)时,低优先级的任务才能获得 CPU 使用权。 UCOSII 不支持多个任务优先级相同,也就是每个任务的优先级必须不一样。


1.4 任务堆栈

存储器中的连续存储空间。为了满足任务切换和响应中断时保存 CPU 寄存器中的内容以及任务调用其他函数时的需要,每个任务都有自己的堆栈。在创建任务的时候,任务堆栈是任务创建的一个重要入口参数。


1.5 任务控制块 OS_TCB

用来记录任务堆栈指针,任务当前状态以及任务优先级等任务属性。UCOSII 的任何任务都是通过任务控制块(TCB)的东西来控制的,一旦任务创建了,任务控制块 OS_TCB 就会被赋值。每个任务管理块有 3 个最重要的参数:


1.任务函数指针;


2.任务堆栈指针;


3.任务优先级;


任务控制块就是任务在系统里面的身份证。


1.6 任务就绪表

用来记录系统中所有处于就绪状态的任务。它是一个位图,系统中每个任务都在这个图中占据一个进制位,该位置的状态(1 或者 0)就表示任务是否处于就绪状态。


1.7 任务调度

一是在任务就绪表中查找优先级最高的就绪任务,二是实现任务的切换。比如说,当一个任务释放 cpu 控制权后,进行一次任务调度,这个时候任务调度器首先要去任务就绪表查询优先级最高的就绪任务,查到之后,进行一次任务切换,转而去执行下一个任务。


1.8 状态切换

UCOSII 的每个任务都是一个死循环。每个任务都处在以下 5 种状态之一的状态下,这 5种状态是:睡眠状态、 就绪状态、 运行状态、 等待状态(等待某一事件发生)和中断服务状态。


睡眠状态:任务在没有被配备任务控制块或被剥夺了任务控制块时的状态。


就绪状态:系统为任务配备了任务控制块且在任务就绪表中进行了就绪登记,任务已经准备好了,但由于该任务的优先级比正在运行的任务的优先级低, 还暂时不能运行,这时任务的状态叫做就绪状态。


运行状态:该任务获得 CPU 使用权,并正在运行中,此时的任务状态叫做运行状态。


等待状态:正在运行的任务,需要等待一段时间或需要等待一个事件发生再运行时,该任务就会把 CPU 的使用权让给别的任务而使任务进入等待状态。


中断服务状态:一个正在运行的任务一旦响应中断申请就会中止运行而去执行中断服务程序,这时任务的状态叫做中断服务状态。


5种状态之间的转换如下图:


这里写图片描述


2.UCOS相关函数


2.1 建立任务函数

如果想让 UCOSII 管理用户的任务,必须先建立任务。 UCOSII 提供了 2 个建立任务的函数: OSTaskCreat 和 OSTaskCreatExt,一般用 OSTaskCreat 函数来创建任务。


该函数原型为:


OSTaskCreate(void(*task)(void*pd),void*pdata,OS_STK*ptos,INTU prio);


task:是指向任务代码的指针;


pdata:是任务开始执行时,传递给任务的参数的指针;


ptos:是分配给任务的堆栈的栈顶指针;


prio :是分配给任务的优先级。


每个任务都有自己的堆栈,堆栈必须申明为 OS_STK 类型,并且由连续的内存空间组 成。可以静态分配堆栈空间,也可以动态分配堆栈空间。


2.2 任务删除函数

任务删除,其实就是把任务置于睡眠状态。 UCOSII提供的任务删除函数原型为:


INT8U OSTaskDel(INT8U prio);


参数 prio :要删除的任务的优先级,可见该函数是通过任务优先级来实现任务删除的。


特别注意:任务不能随便删除,必须在确保被删除任务的资源被释放的前提下才能删除!


2.3 请求任务删除函数

前面提到,必须确保被删除任务的资源被释放的前提下才能将其删除,所以通过向被删除任务发送删除请求,来实现任务释放自身占用资源后再删除。


UCOSII 提供的请求删除任务函数原型为:

INT8U OSTaskDelReq(INT8U prio);

通过优先级来确定被请求删除任务。


2.4 任务挂起函数

任务挂起和任务删除有点类似,但是又有区别,任务挂起只是将被挂起任务的就绪标志删除,并做任务挂起记录,并没有将任务控制块任务控制块链表里面删除, 也不需要释 

放其资源, 而任务删除则必须先释放被删除任务的资源,并将被删除任务的任务控制块也给删了。被挂起的任务,在恢复(解挂)后可以继续运行。


UCOSII 提供的任务挂起函数原型为:

INT8U OSTaskSuspend(INT8U prio);


2.5 任务恢复函数

有任务挂起函数,就有任务恢复函数,通过该函数将被挂起的任务恢复,让调度器能 

够重新调度该函数。


UCOSII 提供的任务恢复函数原型为:

INT8U OSTaskResume(INT8U prio);


3.移植 UCOSII


3.1 移植UCOUS


3.2 编写任务函数并设置其堆栈大小和优先级等参数

编写任务函数,以便 UCOSII 调用。


设置函数堆栈大小,这个需要根据函数的需求来设置,如果任务函数的局部变量多,嵌套层数多,那么相应的堆栈就得大一些,如果堆栈设置小了,很可能出现的结果就是 CPU进入 HardFault,遇到这种情况,就必须把堆栈设置大一点了。另外,有些地方还需要注意堆栈字节对齐的问题,如果任务运行出现莫名其妙的错误(比如用到 sprintf 出错),请考虑是不是字节对齐的问题。


设置任务优先级, 这个需要根据任务的重要性和实时性设置,高优先级的任务有优先使用 CPU 的权利。


3.3 初始化 UCOSII,并在 UCOSII 中创建任务

调用 OSInit,初始化 UCOSII,通过调用 OSTaskCreate 函数创建我们的任务。


3.4 启动 UCOSII

调用 OSStart,启动 UCOSII。


4.软件配置


4.1 UCOSII源码说明


这里写图片描述


UCOSII-CORE:是UCOSII 的核心源码,不需要做任何变动。

UCOSII-PORT :移植 UCOSII 要修改的 3 个代码,这个在移植的时候完成。

UCOSII-CONFIG : UCOSII 的配置部分,主要由用户根据自己的需要对 UCOSII进行裁剪或其他设置。


4.2 UCOSII简易测试

#include "led.h"

#include "delay.h"

#include "sys.h"

#include "includes.h"    


/////////////////////////UCOSII任务设置///////////////////////////////////

//START 任务

//设置任务优先级

#define START_TASK_PRIO                 10 //开始任务的优先级设置为最低

//设置任务堆栈大小

#define START_STK_SIZE                  64

//任务堆栈  

OS_STK START_TASK_STK[START_STK_SIZE];

//任务函数

void start_task(void *pdata);   


//LED0任务

//设置任务优先级

#define LED0_TASK_PRIO                  7 

//设置任务堆栈大小

#define LED0_STK_SIZE                   64

//任务堆栈  

OS_STK LED0_TASK_STK[LED0_STK_SIZE];

//任务函数

void led0_task(void *pdata);



//LED1任务

//设置任务优先级

#define LED1_TASK_PRIO                  6 

//设置任务堆栈大小

#define LED1_STK_SIZE                   64

//任务堆栈

OS_STK LED1_TASK_STK[LED1_STK_SIZE];

//任务函数

void led1_task(void *pdata);



 int main(void)

 {  

    delay_init();            //延时函数初始化  

    NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);// 设置中断优先级分组2

    LED_Init();         //初始化与LED连接的硬件接口

    OSInit();   

    OSTaskCreate(start_task,(void *)0,(OS_STK *)&START_TASK_STK[START_STK_SIZE-1],START_TASK_PRIO );//创建起始任务

    OSStart();  

 }



//开始任务

void start_task(void *pdata)

{

    OS_CPU_SR cpu_sr=0;

    pdata = pdata; 

    OS_ENTER_CRITICAL();            //进入临界区(无法被中断打断)    

    OSTaskCreate(led0_task,(void *)0,(OS_STK*)&LED0_TASK_STK[LED0_STK_SIZE-1],LED0_TASK_PRIO);                         

    OSTaskCreate(led1_task,(void *)0,(OS_STK*)&LED1_TASK_STK[LED1_STK_SIZE-1],LED1_TASK_PRIO);                     

    OSTaskSuspend(START_TASK_PRIO); //挂起起始任务.

    OS_EXIT_CRITICAL();             //退出临界区(可以被中断打断)

}


//LED0任务

void led0_task(void *pdata)

{       

    while(1)

    {

        LED0=0;

        delay_ms(80);

        LED0=1;

        delay_ms(920);

    };

}


//LED1任务

void led1_task(void *pdata)

{     

    while(1)

    {

        LED1=0;

        delay_ms(300);

        LED1=1;

        delay_ms(300);

    };

}


关键字:STM32  UCOSII(1)

编辑:什么鱼 引用地址:http://www.eeworld.com.cn/mcu/2019/ic-news010942851.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:STM32学习笔记一一SysTick
下一篇:STM32学习笔记一一内存管理

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

STM32堆栈设置

1.堆和栈大小 定义大小在startup_stm32f2xx.sStack_Size      EQU     0x00000400                AREA    STACK, NOINIT, READWRITE, ALIGN=3Stack_Mem      
发表于 2019-04-16
STM32堆栈设置

STM32堆和栈(Heap & Stack)的资料理解

源起:在移植cjson的过程中,解析json包的时候发现动态内存分配不足而导致解析失败,为解决这一问题,而深入了解stm32的堆和栈。stm32的存储器结构。Flash,SRAM寄存器和输入输出端口被组织在同一个4GB的线性地址空间内。可访问的存储器空间被分成8个主要块,每个块为512MB。FLASH存储下载的程序。SRAM是存储运行程序中的数据。而SRAM一般分这几个部分:静态存储区:内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在。它主要存放静态数据、全局数据和常量。栈区:在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率
发表于 2019-04-16
STM32堆和栈(Heap & Stack)的资料理解

STM32定义堆栈地址到ram区顶部

本设置针对stm32f103rbt6的设置,该芯片RAM大小为20kB,故RAM区地址范围为0x20000000—0x20005000,芯片信息如下图所示;第一步:设置.sct文件;;*************************************************************; *** Scatter-Loading Description Filegenerated by uVision ***; *************************************************************LR_IROM1 0x08000000 0x00020000  
发表于 2019-04-16
STM32定义堆栈地址到ram区顶部

STM32之程序如何防止堆栈溢出

近日为某个项目写了个草稿程序,即非正式程序,后来发现老是进入hardfaulthandler,原来是堆栈溢出,后仔细查看发现函数调用纵深太深,最多的时候可保持7个函数在堆栈中调用。因此有心得如下:一、函数调用不要纵深太深,即以下模式:main(){   fun1();}fun1(){  fun2();}fun2(){   fun3();}fun3(){  fun4();}fun4(){  fun5();}fun5(){  fun6();}fun6(){   fun7();}这样子main函数要调用fun1函数完成某个功能,则要一直调到
发表于 2019-04-16

stm32之堆栈

stm32中的堆栈设置keil编译完成时存储情况当编译成功时,会出现: BUILD://Program Size: Code=340 RO-data=252 RW-data=0 ZI-data=1632Code:程序代码部分RO-data: 程序定义的常量const tempRW-data:已初始化的全局变量ZI-data:未初始化的全局变量片中的:flash=Code+RO-data+RW-dataRAM=RW-data+ZI-data通过上面的BUILD可以看出,这个程序已经用了1600多的RAM,为什么会出用到这么多的RAM呢?在startup_stm32f10x_md.s文件中存在:St
发表于 2019-04-16

说说STM32的堆栈与内存

1.概念这里所说的堆栈,是针对单片机所说的“堆”与“栈”,指的是内存中一片特殊用途的区域。而不是数据结构中的堆栈(虽然其实规则一样)。这里所说的内存,是指RAM,RAM包括SRAM,DRAM等。而不是什么手机内存卡之类。这里所说的flash,指的是用作为ROM的存储器,保存代码与常量数据。而不是动画制作。。。栈的生长方向:指的是入栈方向,从高地址向低地址生长叫做向下生长,或逆向生长;反过来就叫向上生长,或正向生长。STM32的栈是向下生长。2.内存中的堆栈安排确切地说,是keil mdk根据STM32的特性,对stm32的RAM甚至flash进行部署。编译工程后,在生成的.map文件里可以看到具体的安排。双击工程界面的工程根目录
发表于 2019-04-16
说说STM32的堆栈与内存

小广播

何立民专栏

单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD.com.cn, Inc. All rights reserved