datasheet

STM32学习之:定时器简介

2018-10-21来源: eefocus 关键字:STM32  定时器简介

本文为STM32定时器设计大体简介。
 一、定时器简介
1、时钟来源


2、定时器结构(以基本定时器为例)


二、基本定时器的编程方法
1、基本定时器的寄存器


2、例程
/**
* @brief 定时器6的初始化,定时周期0.01s
* @param 无
* @retval 无
*/
void TIM6_Init(void)
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
/*AHB = 72MHz,RCC_CFGR的PPRE1 = 2,所以APB1 = 36MHz,TIM2CLK = APB1*2 = 72MHz */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM6, ENABLE);
/* 时基初始化 */
TIM_TimeBaseStructure.TIM_Period = 99; //当定时器从0计数到99,即定时周期为100次
TIM_TimeBaseStructure.TIM_Prescaler = 7199; //设置预分频:10KHz
TIM_TimeBaseInit(TIM6, &TIM_TimeBaseStructure);
TIM_ARRPreloadConfig(TIM6, ENABLE); //使能TIM6重载寄存器ARR
/* 设置更新请求源只在计数器上溢或下溢时产生中断 */
TIM_UpdateRequestConfig(TIM6,TIM_UpdateSource_Global);
/* 定时器6的上溢或下溢中断使能 */
TIM_ITConfig(TIM6, TIM_IT_Update, ENABLE);
/* 定时器6启动 */
TIM_Cmd(TIM6, ENABLE); //使能定时器6
TIM_ClearITPendingBit(TIM6,TIM_IT_Update);
/* 定时器6的NVIC中断配置 */
NVIC_TIM6_Configuration();
}
三、疑惑与解答
以下问题皆以基本定时器为例进行阐述
1、何谓更新事件
更新事件就是指这个事件发生后,将会将定时器的寄存器进行更新,以使定时器工作在新的配置下,例如当一个定时周期结束(计数器上溢)或者其他事件。
2、何谓自动重装载寄存器(auto-reload register)
自动重装载寄存器决定了定时器的上溢时机,当定时器的计数器中数值达到了自动重装载寄存器规定的值,计数器就要归零。也就是说自动重装载寄存器决定了定时器的周期。假定TIMx_ARR=0x36,而且分频系数为1,则可以看到下边的情况。


3、自动重装载寄存器和预加载寄存器的区别与联系
当“TIMx_CR1.ARPE = 1”的时候,STM32中有自动重装载寄存器和预加载寄存器(TIMx_ARR)。
预加载寄存器是自动重装载寄存器的“影子”,也就是预加载寄存器是自动重装载寄存器的缓冲器。自动重装载寄存器的功能在2点已经说明,但是自动重装载寄存器不是用户用程序可以直接进行操作的,用户需要借助于预加载寄存器(缓冲区)才能访问它。
其目的是为了保证自动重装载寄存器在合适的时候被修改,不允许其随便被修改,否则可能导致在过渡的时候发生不期望的结果。
这是什么一个概念呢?
在定时器一个周期结束的时候,产生了一个更新中断,我们在中断服务程序中修改预加载寄存器(TIMx_ARR),但是并没有直接写入到自动重装载寄存器。在中断刚一产生的时候(早于我们的服务程序),原来TIMx_ARR的值被硬件自动装入自动重装载寄存器中。所以下一个定时器周期的长度取决于“原来TIMx_ARR的值”,而非我们在中断服务程序中的修改值。
那么什么时候,我们的修改值才起作用呢?
当下一个定时器周期结束的时候,我们对TIMx_ARR的修改值就被硬件自动写入到自动重装载寄存器中,所以我们的修改值在下下个定时器周期才起作用。
而当“TIMx_CR1.ARPE = 0”的时候,STM32中只有自动重装载寄存器(TIMx_ARR),没有预加载寄存器。自动重装载寄存器没有缓冲区,对TIMx_ARR的修改,也就是直接对自动重装载寄存器的修改。
这种情形又怎样看呢?
在定时器一个周期结束的时候,产生了一个更新中断,我们在中断服务程序中修改自动重装载寄存器(TIMx_ARR)。所以下一个定时器周期的定时长度要取决于我们的这个修改值。
总结:
① TIMx_CR1.ARPE = 0,自动重装载寄存器没有缓冲区,对TIMx_ARR的修改直接影响下一个周期的定时长度。
② TIMx_CR1.ARPE = 1,自动重装载寄存器有缓冲区,对TIMx_ARR的修改影响的是下下一个周期的定时长度。
③ TIMx_CR1.ARPE = 1,自动重装载寄存器有缓冲区预加载寄存器(TIMx_ARR),预加载寄存器更新到自动重装载寄存器的时机是:当定期器一个定时周期结束产生一个更新事件的时候。
④ TIMx_CR1.ARPE = 1,注意我们在写程序的时候,给TIMx_ARR赋值,并没有真正的写入到自动重装载寄存器中,而是写入到了预加载寄存器中。
当我们需要定时器以T1和T2交替工作:
⑤ TIMx_CR1.ARPE = 0,自动重装载寄存器没有缓冲区,我们是在T1定时周期已经开始一会儿的时候,才去设定定时周期T1长度;在T2定时周期已经开始一会儿的时候,才去设定定时周期T2长度。因为当T1结束的时候,中断发生后,我们在中断程序中设定定时周期为T2。其实,此时定时器周期T2已经开始一段时间了。要知道定时器一个周期结束的时候,硬件自动进入下一个周期的计数,而不受软件的控制。
⑥ TIMx_CR1.ARPE = 1,自动重装载寄存器有缓冲区,我们是在T1定时周期一开始,就去设定定时周期T1的长度;在T2定时周期一开始,就去设定定时周期T2的长度。因为当T1结束的时候,更新事件产生(中断也发生),(我们在上一个定时周期的中断程序中已经设定定时周期为T2),TIMx_ARR中的T2值被硬件更新进入到自动重装载寄存器中。
⑦ 当T1、T2两个周期都很大的时候,需要ticks比较多,两种方式都不会出现错误。
但是当T1、T2两个周期都很小的时候,需要ticks比较少,对于“TIMx_CR1.ARPE = 0”的情况,就有可能出现问题。因为有可能在T1定时周期已经超过T1时间长度的时候,才去设定定时周期T1;在T2周期已经超过T2时间长度的时候,才去设定定时周期T2。
总结:
在需要不断切换定时器的周期时,而且周期都比较短,程序员需要通过预加载寄存器配合自动重装载寄存器,来操作定时器,以保证定时器周期的平稳过渡。
自动重装载寄存器是预加载的,每次读写自动重装载寄存器时,实际上是通过读写预加载寄存器实现。根据TIMx_CR1 寄存器中的自动重装载预加载使能位(ARPE) ,写入预加载寄存器的内容能够立即或在每次更新事件时,传送到它的影子寄存器。

关键字:STM32  定时器简介

编辑:什么鱼 引用地址:http://www.eeworld.com.cn/mcu/2018/ic-news102141963.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:STM32学习之:Context—M3简介
下一篇:最后一页

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

STM32学习之:DMA详解

;      传统的DMA的概念是用于大批量数据的传输,但是我理解,在STM32中,它的概念被扩展了,也许更多的时候快速是其应用的重点。数据可以从1~65535个。直接存储器存取(Direct Memory Access,DMA)是计算机科学中的一种内存访问技术。它允许某些电脑内部的硬体子系统(电脑外设),可以独立地直接读写系统存储器,而不需绕道 CPU。在同等程度的CPU负担下,DMA是一种快速的数据传送方式。它允许不同速度的硬件装置来沟通,而不需要依于 CPU的大量中断请求。【摘自Wikipedia】现在越来越多的单片机采用DMA技术,提供外设和存储器之间或者存储器之间
发表于 2018-10-21
STM32学习之:DMA详解

STM32学习之:FMC-扩展外部SDRAM

参考资料:《STM32F4xx 参考手册 2》、《STM32F4xx 规格书》、库帮助文档《stm32f4xx_dsp_stdperiph_lib_um.chm》。关于 SDRAM 存储器,请参考前面的“常用存储器介绍”,实验中 SDRAM 芯片的具体参数,请参考其规格书《IS42-45S16400J》来了解。1、 SDRAM 控制原理  STM32 控制器芯片内部有一定大小的 SRAM 及 FLASH 作为内存和程序存储空间,但当程序较大,内存和程序空间不足时,就需要在 STM32 芯片的外部扩展存储器了。  STM32F429 系列芯片扩展内存时可以选择 SRAM 和 SDRAM,由于 SDRAM 的“容量/价格”比较
发表于 2018-10-21
STM32学习之:FMC-扩展外部SDRAM

STM32学习之:外部中断

STM32 GPIO外部中断总结一、STM32中断分组:  STM32 的每一个GPIO都能配置成一个外部中断触发源,这点也是 STM32 的强大之处。STM32 通过根据引脚的序号不同将众多中断触发源分成不同的组,比如:PA0,PB0,PC0,PD0,PE0,PF0,PG0为第一组,那么依此类推,我们能得出一共有16 组,STM32 规定,每一组中同时只能有一个中断触发源工作,那么,最多工作的也就是16个外部中断。STM32F103 的中断控制器支持 19 个外部中断/事件请求。每个中断设有状态位,每个中断/事件都有独立的触发和屏蔽设置。STM32F103 的19 个外部中断为:线 0~15:对应外部 
发表于 2018-10-21

STM32学习之:STM32F4XX的三大主体部分

分别为0.4V和VDD-0.4V时,可以提供或吸收8mA电流;如果把输入输出电平分别放宽到1.3V和VDD-1.3V时,可以提供或吸收20mA电流。G.       具有独立的唤醒I/O口。H.       STM32上很多I/O管脚功能可以重新映射。I.         GPIO口的配置具有上锁功能,当配置好GPIO口后,可以通过程序锁住配置组合,直到下次芯片复位才能解锁。此功能非常有利于在程序跑飞的情况下保护系统中其他的设备,不会因为某些I/O口的配置被改变而损坏——如一个输入口变成输出口并输出电流。J.    
发表于 2018-10-21

STM32学习之:RAM的分配和占用

一个小的项目,在测试时间和产品量稍微大一些之后,出现了一些莫名其妙的非逻辑错误的Bug(最头疼的是不能每次都能复制出来)。经过修改后,最近一个月的测试都没有出现。本人在这里得到了原子哥和其他朋友的很多帮助,也把自己的一些经验分享给各位,也欢迎大家指正。1. 程序偶尔会出现一些Bug,经过output串口信息发现一些堆栈的临时变量被莫名其妙的修改。stm32103rbt6的内存是20K,算比较小了,看到程序出错的那个函数申请了很多零时变量,也需要访问很多全局变量。猜想是内存被其他操作更改所致。解决ram被使用过多的一个方法是尽量少用全局变量,能用const就用一定用const变量,因为这样会放在flash,而不是ram.我的程序未将
发表于 2018-10-21

STM32的RTC晶振不起振的原因及解决方法

STM32的RTC晶振经常出现不起振的问题,这已经是“业界共识”了。很多人在各种电子论坛上求助类似于“求高手指点!RTC晶振不起振怎么办”的问题,而其答案基本可以概括为“这次高手帮不了你了”  更有阴谋论者提出让人啼笑皆非的解释——STM32的RTC晶振不起振是ST与晶振厂商串通后故意搞出来的,目的是提高某晶振厂商高端晶振的销量。  最近做的几块板子也用到了STM32的RTC,前后两版一共做了大概6片,幸运的是并未遇到晶振不起振的现象。而我采用的是3毛钱一个的普通晶振,并未选用传说中低负载高精度晶振。后来在另外一片实验性质的板子上首次遇到了晶振不起振的问题,而且做了2片都不起振,这才让我意识到这个问题的严重性。  从上述现象
发表于 2018-10-21
STM32的RTC晶振不起振的原因及解决方法

小广播

何立民专栏

单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2018 EEWORLD.com.cn, Inc. All rights reserved