datasheet

STM32学习之:事件标志组

2018-10-21来源: eefocus关键字:STM32  事件标志组

为什么要使用事件标志

事件标志组是实现多任务同步的有效机制之一。也许有不理解的初学者会问采用事件标志组多麻烦,

搞个全局变量不是更简单?其实不然,在裸机编程时,使用全局变量的确比较方便,但是在加上 RTOS 后

就是另一种情况了。 使用全局变量相比事件标志组主要有如下三个问题:

 使用事件标志组可以让 RTOS 内核有效地管理任务,而全局变量是无法做到的,任务的超时等机制需

要用户自己去实现。

 使用了全局变量就要防止多任务的访问冲突,而使用事件标志组则处理好了这个问题,用户无需担心。

 使用事件标志组可以有效地解决中断服务程序和任务之间的同步问题。 

FreeRTOS 任务间事件标志组的实现

任务间事件标志组的实现是指各个任务之间使用事件标志组实现任务的通信或者同步机制。

下面我们来说说 FreeRTOS 中事件标志的实现,根据用户在 FreeRTOSConfig.h 文件中的配置:

 #define configUSE_16_BIT_TICKS 1

配置宏定义 configUSE_16_BIT_TICKS 为 1 时,每创建一个事件标志组,用户可以使用的事件标志是

8 个。

 #define configUSE_16_BIT_TICKS 0 

配置宏定义 configUSE_16_BIT_TICKS 为 0 时,每创建一个事件标志组,用户可以使用的事件标志是24 个。 

上面说的 8 个和 24 个事件标志应该怎么理解呢?其实就是定义了一个 16 位变量,仅使用了低 8bit

或者定义了一个 32 位变量,仅使用了低 24bit。每一个 bit 用 0 和 1 两种状态来代表事件标志。 反映到

FreeRTOS 上就是将事件标志存储到了 EventBits_t 类型的变量中, 这个变量又是怎么回事呢?定义如下: 

由上面定义可以看出,TickType_t 数据类型可以是 16 位数或者 32 位数,这样就跟上面刚刚说的

configUSE_16_BIT_TICKS 宏定义呼应上了。教程配套的例子都是配置宏定义 configUSE_16_BIT_TICKS

为 0, 即用户每创建一个事件标志组, 有 24 个标志可以设置。 如下图所示,这里仅使用 bit0, bit1 和 bit2。 


 下面我们通过如下的框图来说明一下 FreeRTOS 事件标志的实现,让大家有一个形象的认识。 

FreeRTOS 中断方式事件标志组的实现

FreeRTOS 中断方式事件标志组的实现是指中断函数和 FreeRTOS 任务之间使用事件标志。 下面我们

通过如下的框图来说明一下 FreeRTOS 事件标志的实现,让大家有一个形象的认识。

 任务 Task1 运行过程中调用函数 xEventGroupWaitBits,等待事件标志位被设置,任务 Task1 由运

行态进入到阻塞态。

 Task1 阻塞的情况下,串口接收到数据进入到了串口中断服务程序,在串口中断服务程序中设置 Task1

等待的事件标志,任务 Task1 由阻塞态进入到就绪态,在调度器的作用下由就绪态又进入到运行态。

上面就是一个简单的 FreeRTOS 中断方式事件标志通信过程。 实际应用中,中断方式的消息机制要注意以

下四个问题:

 中断函数的执行时间越短越好,防止其它低于这个中断优先级的异常不能得到及时响应。

 实际应用中,建议不要在中断中实现消息处理,用户可以在中断服务程序里面发送消息通知任务,在

任务中实现消息处理,这样可以有效地保证中断服务程序的实时响应。同时此任务也需要设置为高优

先级,以便退出中断函数后任务可以得到及时执行。

 中断服务程序中一定要调用专用于中断的事件标志设置函数,即以 FromISR 结尾的函数。

 在操作系统中实现中断服务程序与裸机编程的区别。

 如果 FreeRTOS 工程的中断函数中没有调用 FreeRTOS 的事件标志组 API 函数,与裸机编程是

一样的。

 如果 FreeRTOS 工程的中断函数中调用了 FreeRTOS 的事件标志组的 API 函数,退出的时候要

检测是否有高优先级任务就绪,如果有就绪的,需要在退出中断后进行任务切换,这点跟裸机编

程稍有区别,详见 实验例程说明(中断方式):

 另外强烈推荐用户将 Cortex-M3 内核的 STM32F103 和 Cortex-M4 内核的 STM32F407, F429

的 NVIC 优先级分组设置为 4,即:NVIC_PriorityGroupConfig(NVIC_PriorityGroup_4);这样中

断优先级的管理将非常方便。

 用户要在 FreeRTOS 多任务开启前就设置好优先级分组,一旦设置好切记不可再修改。 


事件标志组 API 函数

使用如下 11 个函数可以实现 FreeRTOS 的事件标志组:

 xEventGroupCreate()

 xEventGroupCreateStatic()

 vEventGroupDelete()

 xEventGroupWaitBits()

 xEventGroupSetBits()

 xEventGroupSetBitsFromISR()

 xEventGroupClearBits()

 xEventGroupClearBitsFromISR()

 xEventGroupGetBits()

 xEventGroupGetBitsFromISR() 

这里我们重点的说以下 4 个函数:

 xEventGroupCreate()

 xEventGroupWaitBits()

 xEventGroupSetBits()

 xEventGroupSetBitsFromISR() 


函数 xEventGroupCreate

函数原型:

EventGroupHandle_t xEventGroupCreate( void );

函数描述:

函数 xEventGroupCreate 用于创建事件标志组。

 返回值,如果创建成功, 此函数返回事件标志组的句柄,如果 FreeRTOSConfig.h 文件中定义的 heap

空间不足会返回 NULL

#define configTOTAL_HEAP_SIZE ( ( size_t ) ( 30 * 1024 ) ) 

函数 xEventGroupSetBits

函数原型:

EventBits_t xEventGroupSetBits( EventGroupHandle_t xEventGroup, /* 事件标志组句柄 */

const EventBits_t uxBitsToSet ); /* 事件标志位设置 */

函数描述:

函数 xEventGroupSetBits 用于设置指定的事件标志位为 1。

 第 1 个参数是事件标志组句柄。

 第 2 个参数表示 24 个可设置的事件标志位,EventBits_t 是定义的 32 位变量,

低 24 位用于事件标志设置。变量 uxBitsToSet 的低 24 位的某个位设置为 1,那么被设置的

事件标志组的相应位就设置为 1。 变量 uxBitsToSet 设置为 0 的位对事件标志相应位没有影响。比

如设置变量 uxBitsToSet = 0x0003 就表示将事件标志的位 0 和位 1 设置为 1,其余位没有变化。


 返回当前的事件标志组数值。 


使用这个函数要注意以下问题:

1. 使用前一定要保证事件标志组已经通过函数 xEventGroupCreate 创建了。

2. 此函数是用于任务代码中调用的,故不可以在中断服务程序中调用此函数,中断服务程序中使用的是

xEventGroupSetBitsFromISR

3. 用户通过参数 uxBitsToSet 设置的标志位并不一定会保留到此函数的返回值中,下面举两种情况:

a. 如果设置一个位导致等待该位的任务离开阻塞状态,则该位可能会被自动清除(请参阅xEventGroupWaitBits()的xClearBitOnExit参数)。

b. 调用此函数的任务是一个低优先级任务,通过此函数设置了事件标志后,让一个等待此事件标志

的高优先级任务就绪了,会立即切换到高优先级任务去执行,相应的事件标志位会被函数

xEventGroupWaitBits 清除掉,等从高优先级任务返回到低优先级任务后,函数xEventGroupSetBits 的返回值已经被修改。


函数 xEventGroupSetBitsFromISR

函数原型:

BaseType_t xEventGroupSetBitsFromISR(

EventGroupHandle_t xEventGroup, /* 事件标志组句柄 */

const EventBits_t uxBitsToSet, /* 事件标志位设置 */

BaseType_t *pxHigherPriorityTaskWoken ); /* 高优先级任务是否被唤醒的状态保存 */

函数描述:

函数 xEventGroupSetBitsFromISR,用于设置指定的事件标志位为 1。(中断方式)

 第 1 个参数是事件标志组句柄。

 第 2 个参数表示 24 个可设置的事件标志位,EventBits_t 是定义的 32 位变量(详解 18.1.2 小节说

明),低 24 位用于事件标志设置。变量 uxBitsToSet 的低 24 位的某个位设置为 1,那么被设置的

事件标志组的相应位就设置为 1。 变量 uxBitsToSet 设置为 0 的位对事件标志相应位没有影响。比

如设置变量 uxBitsToSet = 0x0003 就表示将事件标志的位 0 和位 1 设置为 1,其余位没有变化。

 第 3 个参数用于保存是否有高优先级任务准备就绪。如果函数执行完毕后,此参数的数值是 pdTRUE,

说明有高优先级任务要执行,否则没有。 

 返回值,如果消息成功发送给 daemon 任务(就是 FreeRTOS 的定时器任务)返回 pdPASS,否则

返回 pdFAIL,另外 daemon 任务中的消息队列满了也会返回 pdFAIL。

使用这个函数要注意以下问题:

1. 使用前一定要保证事件标志已经通过函数 xEventGroupCreate 创建了。同时要在 FreeRTOSConfig.h

文件中使能如下三个宏定义:

#define INCLUDE_xEventGroupSetBitFromISR 1

#define configUSE_TIMERS 1

#define INCLUDE_xTimerPendFunctionCall 1

2. 函数 xEventGroupSetBitsFromISR 是用于中断服务程序中调用的,故不可以在任务代码中调用此函

数,任务代码中使用的是 xEventGroupSetBits。

3. 函数 xEventGroupSetBitsFromISR 对事件标志组的操作是不确定性操作,因为不知道当前有多少个

任务在等待此事件标志。而 FreeRTOS 不允许在中断服务程序和临界段中执行不确定性操作。 为了不

在中断服务程序中执行,就通过此函数给 FreeRTOS 的 daemon 任务(就是 FreeRTOS 的定时器任

务)发送消息,在 daemon 任务中执行事件标志的置位操作。 同时也为了不在临界段中执行此不确定

操作,将临界段改成由调度锁来完成。这样不确定性操作在中断服务程序和临界段中执行的问题就都

得到解决了。

4. 由于函数 xEventGroupSetBitsFromISR 对事件标志的置位操作是在 daemon 任务里面执行的,如果

想让置位操作立即生效,即让等此事件标志的任务能够得到及时执行,需要设置 daemon 任务的优先

级高于使用此事件标志组的所有其它任务。

5. 通过下面的使用举例重点看一下函数 xEventGroupSetBitsFromISR 第三个参数的规范用法,初学者务

必要注意。 

函数 xEventGroupWaitBits

函数原型:

EventBits_t xEventGroupWaitBits(

const EventGroupHandle_t xEventGroup, /* 事件标志组句柄 */

const EventBits_t uxBitsToWaitFor, /* 等待被设置的事件标志位 */

const BaseType_t xClearOnExit, /* 选择是否清零被置位的事件标志位 */

const BaseType_t xWaitForAllBits, /* 选择是否等待所有标志位都被设置 */

TickType_t xTicksToWait ); /* 设置等待时间 */

函数描述:

函数 xEventGroupWaitBits 等待事件标志被设置。

 第 1 个参数是事件标志组句柄。

 第 2 个参数表示等待 24 个事件标志位中的指定标志,EventBits_t 是定义的 32 位变量(详解 18.1.2

小节说明),低 24 位用于事件标志设置。比如设置变量 uxBitsToWaitFor = 0x0003 就表示等待事

件标志的位 0 和位 1 设置为 1。 此参数切不可设置为 0。

 第 3 个参数选择是否清除已经被置位的事件标志,如果这个参数设置为 pdTRUE,且函数

xEventGroupWaitBits 在参数 xTicksToWait 设置的溢出时间内返回,那么相应被设置的事件标志

位会被清零。 如果这个参数设置为 pdFALSE,对已经被设置的事件标志位没有影响。

 第 4 个参数选择是否等待所有的标志位都被设置,如果这个参数设置为 pdTRUE,要等待第 2 个参

数 uxBitsToWaitFor 所指定的标志位全部被置 1,函数才可以返回。当然,超出了在参数

xTicksToWait 设置的溢出时间也是会返回的。如果这个参数设置为 pdFALSE,第 2 个参数

uxBitsToWaitFor 所指定的任何标志位被置 1,函数都会返回,超出溢出时间也会返回。

 第 5 个参数设置等待时间,单位时钟节拍周期。 如果设置为 portMAX_DELAY,表示永久等待。

 返回值,由于设置的时间超时或者指定的事件标志位被置 1,导致函数退出时返回的事件标志组数值。

使用这个函数要注意以下问题:

1. 此函数切不可在中断服务程序中调用。

2. 这里再着重说明下这个函数的返回值,通过返回值用户可以检测是哪个事件标志位被置 1 了。 

 如果由于设置的等待时间超时,函数的返回值可会有部分事件标志位被置 1。

 如果由于指定的事件标志位被置1而返回, 并且设置了这个函数的参数xClearOnExit为pdTRUE,

那么此函数的返回值是清零前的事件标志组数值。

另外,调用此函数的任务在离开阻塞状态到退出函数 xEventGroupWaitBits 之间这段时间,如果一个

高优先级的任务抢占执行了,并且修改了事件标志位,那么此函数的返回值会跟当前的事件标志组数

值不同 。


  实验分析场:



static void AppTaskCreate(void)

{


        xTaskCreate(vTaskWork,       /* 任务函数  */

                 "vTaskWork",         /* 任务名    */

                  512,                   /* 任务栈大小,单位word,也就是4字节 */

                  NULL,                  /* 任务参数  */

                  1,                     /* 任务优先级*/

                  &xHandleTaskWork );  /* 任务句柄  */

    

    

    xTaskCreate( vTaskLed1,            /* 任务函数  */

                 "vTaskLed1",          /* 任务名    */

                 512,                 /* 任务栈大小,单位word,也就是4字节 */

                 NULL,                /* 任务参数  */

                 2,                   /* 任务优先级*/

                 &xHandleTaskLED1); /* 任务句柄  */

    

    xTaskCreate( vTaskBeep,             /* 任务函数  */

                 "vTaskBeep",           /* 任务名    */

                 512,                     /* 任务栈大小,单位word,也就是4字节 */

                 NULL,                   /* 任务参数  */

                 3,                       /* 任务优先级*/

                 &xHandleTaskBeep );  /* 任务句柄  */

    

    

}


 



/*********************************************************************************

  * @ 函数名  : vTaskBeep

  * @ 功能说明: Beep 任务

  * @ 参数    : pvParameters,当任务创建的时候传进来,可以没有  

  * @ 返回值  : 无

  ********************************************************************************/

void vTaskBeep(void *pvParameters)

{

        EventBits_t uxBits;

        const TickType_t xTicksToWait = 5000; /* 最大延迟100ms */

    

    while(1)

    {

        /* 等K1按键按下设置bit0和K2按键按下设置bit1 */

        uxBits = xEventGroupWaitBits(xCreatedEventGroup, /* 事件标志组句柄 */

                                     BIT_ALL,            /* 等待bit0和bit1被设置 */

                                     pdTRUE,             /* 退出前bit0和bit1被清除,这里是bit0和bit1都被设置才表示“退出”*/

                                     pdTRUE,             /* 设置为pdTRUE表示等待bit1和bit0都被设置*/

                                     xTicksToWait);      /* 等待延迟时间 */

        

        if((uxBits & BIT_ALL) == BIT_ALL)

        {

            /* 接收到bit1和bit0都被设置的消息 */

            printf("接收到bit0和bit1都被设置的消息\r\n");

        }

        else

        {

            /* 超时,另外注意仅接收到一个按键按下的消息时,变量uxBits的相应bit也是被设置的 */

            BEEP_TOGGLE; 

        }

    }

}


 


 



/***按键处理任务***/




static void vTaskWork(void *pvParameters)

{


    EventBits_t uxBits;


    while(1)

    {

        

        

        if (key1_flag==1)

        {

            key1_flag=0;

                        /* 设置事件标志组的bit0 */

                    uxBits = xEventGroupSetBits(xCreatedEventGroup, BIT_0);

                    if((uxBits & BIT_0) != 0)

                    {

                        printf("K1键按下,事件标志的bit0被设置\r\n");

                    }

                    else

                    {

                        printf("K1键按下,事件标志的bit0被清除,说明任务vTaskBeep已经接受到bit0和bit1被设置的情况\r\n");

                    }

        }

        if(key2_flag==1)

        {

                    key2_flag=0;

                    uxBits = xEventGroupSetBits(xCreatedEventGroup, BIT_1);

                    if((uxBits & BIT_1) != 0)

                    {

                        printf("K2键按下,事件标志的bit1被设置\r\n");

                    }

                    else

                    {

                        printf("K2键按下,事件标志的bit1被清除,说明任务vTaskBeep已经接受到bit0和bit1被设置的情况\r\n");

                    }

            

        }

    

        

        vTaskDelay(20);

    }

}



创建的任务,按键处理优先级低于事件等待的Beep任务,先按下K1,再按K2,打印如下:



第一个输出毫无疑问,第二行,由于事件等待Beep优先级大于按键处理,所以当K2按下之后,调度器首先回到高优先级的任务Beep,打印出此时K1,K2都被按下以致bit0和bit1被置位的消息,在Beep任务中调用xEventGroupWaitBits函数后,这两个置为1的位bit1和bit0会被清零,此时,调度器再次回到低优先级的按键处理任务时,xEventGroupSetBits的返回值已经更新成清零值,故第三行打印清除的消息。


现在,我们把按键处理的优先级设置成为高于Beep任务的,打印输出如下:

第一个输出也毫无疑问,按下K1,bit0被置位,当我按下K2的时候,此时调度器 不会马上返回低优先级的Beep任务,而会继续执行自身(此实验设置按键处理最高优先级)直到被阻塞,所以会有第二行的打印,但是,注意,第二行按下K2的打印却依旧显示的是被清除了,因为在Beep任务中使用了事件等待,而K2按下的时候,freertos操作系统会知道等待两个按键按下的事件已经触发了,此时,在按键处理任务中,xEventGroupSetBits的返回值,也不是当前获取的置位值了,而是经过xEventGroupSetBits函数自动清零之后的值,所以第二行打印的是清零消息,第三行打印都被置位,为什么不是清零?因为此时的xEventGroupWaitBits返回值是清零前的事件标志组数值。


可能你觉得有点奇怪, xEventGroupSetBits函数本就是置位信息的功能,居然还要受xEventGroupWaitBits函数和调用形式影响,哪怕调用xEventGroupWaitBits函数的任务优先级还是低于我们的按键任务的,但是,正是因为这样,我们真正实时传递了事件信息啊。试想,要是我的两个按键事件都已经触发了,而我在按键处理任务中还不能立即知道,这样的实时性显然是不满足需求的。就连裸机中,我们通过中断改变一个元素的值,一定是中断改变之后,这个值在被任何使用的时候都已经更新,所以,作为实时操作系统,freertos这样的行为也就可以理解了。


 


中断方式不再演示,只是需要在中断服务函数中使用xEventGroupSetBitsFromISR,使用方式如下:



/*

*********************************************************************************************************

*    函 数 名: TIM_CallBack1和TIM_CallBack2

*    功能说明: 定时器中断的回调函数,此函数被bsp_StartHardTimer所调用。                        

*    形    参: 无

*    返 回 值: 无

*********************************************************************************************************

*/

static void TIM_CallBack1(void)

{

    BaseType_t xResult;

    BaseType_t xHigherPriorityTaskWoken = pdFALSE;

    

    /* 向任务vTaskBeep发送事件标志 */

    xResult = xEventGroupSetBitsFromISR(xCreatedEventGroup, /* 事件标志组句柄 */

                                        BIT_0 ,             /* 设置bit0 */

                                        &xHigherPriorityTaskWoken );


    /* 消息被成功发出 */

    if( xResult != pdFAIL )

    {

        /* 如果xHigherPriorityTaskWoken = pdTRUE,那么退出中断后切到当前最高优先级任务执行 */

        portYIELD_FROM_ISR(xHigherPriorityTaskWoken);

    }

}


关键字:STM32  事件标志组

编辑:什么鱼 引用地址:http://www.eeworld.com.cn/mcu/2018/ic-news102141960.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:STM32学习之:NVIC的初步理解
下一篇:STM32学习之:定时器程序设计探讨

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

STM32堆栈设置

1.堆和栈大小 定义大小在startup_stm32f2xx.sStack_Size      EQU     0x00000400                AREA    STACK, NOINIT, READWRITE, ALIGN=3Stack_Mem      
发表于 2019-04-16
STM32堆栈设置

STM32堆和栈(Heap & Stack)的资料理解

源起:在移植cjson的过程中,解析json包的时候发现动态内存分配不足而导致解析失败,为解决这一问题,而深入了解stm32的堆和栈。stm32的存储器结构。Flash,SRAM寄存器和输入输出端口被组织在同一个4GB的线性地址空间内。可访问的存储器空间被分成8个主要块,每个块为512MB。FLASH存储下载的程序。SRAM是存储运行程序中的数据。而SRAM一般分这几个部分:静态存储区:内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在。它主要存放静态数据、全局数据和常量。栈区:在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率
发表于 2019-04-16
STM32堆和栈(Heap & Stack)的资料理解

STM32定义堆栈地址到ram区顶部

本设置针对stm32f103rbt6的设置,该芯片RAM大小为20kB,故RAM区地址范围为0x20000000—0x20005000,芯片信息如下图所示;第一步:设置.sct文件;;*************************************************************; *** Scatter-Loading Description Filegenerated by uVision ***; *************************************************************LR_IROM1 0x08000000 0x00020000  
发表于 2019-04-16
STM32定义堆栈地址到ram区顶部

STM32之程序如何防止堆栈溢出

近日为某个项目写了个草稿程序,即非正式程序,后来发现老是进入hardfaulthandler,原来是堆栈溢出,后仔细查看发现函数调用纵深太深,最多的时候可保持7个函数在堆栈中调用。因此有心得如下:一、函数调用不要纵深太深,即以下模式:main(){   fun1();}fun1(){  fun2();}fun2(){   fun3();}fun3(){  fun4();}fun4(){  fun5();}fun5(){  fun6();}fun6(){   fun7();}这样子main函数要调用fun1函数完成某个功能,则要一直调到
发表于 2019-04-16

stm32之堆栈

stm32中的堆栈设置keil编译完成时存储情况当编译成功时,会出现: BUILD://Program Size: Code=340 RO-data=252 RW-data=0 ZI-data=1632Code:程序代码部分RO-data: 程序定义的常量const tempRW-data:已初始化的全局变量ZI-data:未初始化的全局变量片中的:flash=Code+RO-data+RW-dataRAM=RW-data+ZI-data通过上面的BUILD可以看出,这个程序已经用了1600多的RAM,为什么会出用到这么多的RAM呢?在startup_stm32f10x_md.s文件中存在:St
发表于 2019-04-16

说说STM32的堆栈与内存

1.概念这里所说的堆栈,是针对单片机所说的“堆”与“栈”,指的是内存中一片特殊用途的区域。而不是数据结构中的堆栈(虽然其实规则一样)。这里所说的内存,是指RAM,RAM包括SRAM,DRAM等。而不是什么手机内存卡之类。这里所说的flash,指的是用作为ROM的存储器,保存代码与常量数据。而不是动画制作。。。栈的生长方向:指的是入栈方向,从高地址向低地址生长叫做向下生长,或逆向生长;反过来就叫向上生长,或正向生长。STM32的栈是向下生长。2.内存中的堆栈安排确切地说,是keil mdk根据STM32的特性,对stm32的RAM甚至flash进行部署。编译工程后,在生成的.map文件里可以看到具体的安排。双击工程界面的工程根目录
发表于 2019-04-16
说说STM32的堆栈与内存

小广播

何立民专栏

单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD.com.cn, Inc. All rights reserved