datasheet

STM32学习之:DMA详解

2018-10-21来源: eefocus 关键字:STM32  DMA

DMA部分我用到的相对简单,当然,可能这是新东西,我暂时还用不到它的复杂功能吧。下面用问答的形式表达我的思路。

DMA有什么用?

       直接存储器存取用来提供在外设和存储器之间或者存储器和存储器之间的高速数据传输。无须CPU的干预,通过DMA数据可以快速地移动。这就节省了CPU的资源来做其他操作。

有多少个DMA资源?

       有两个DMA控制器,DMA1有7个通道,DMA2有5个通道。

数据从什么地方送到什么地方?

       外设到SRAM(I2C/UART等获取数据并送入SRAM);

       SRAM的两个区域之间;

       外设到外设(ADC读取数据后送到TIM1控制其产生不同的PWM占空比);

       SRAM到外设(SRAM中预先保存的数据送入DAC产生各种波形);

       ……还有一些目前还搞不清楚的。

DMA可以传递多少数据?

       传统的DMA的概念是用于大批量数据的传输,但是我理解,在STM32中,它的概念被扩展了,也许更多的时候快速是其应用的重点。数据可以从1~65535个。

直接存储器存取(Direct Memory Access,DMA)是计算机科学中的一种内存访问技术。它允许某些电脑内部的硬体子系统(电脑外设),可以独立地直接读写系统存储器,而不需绕道 CPU。在同等程度的CPU负担下,DMA是一种快速的数据传送方式。它允许不同速度的硬件装置来沟通,而不需要依于 CPU的大量中断请求。【摘自Wikipedia】

现在越来越多的单片机采用DMA技术,提供外设和存储器之间或者存储器之间的高速数据传输。当 CPU 初始化这个传输动作,传输动作本身是由 DMA 控制器 来实行和完成。STM32就有一个DMA控制器,它有7个通道,每个通道专门用来管理一个或多个外设对存储器访问的请求,还有一个仲裁器来协调各个DMA请求的优先权。

DMA 控制器和Cortex-M3核共享系统数据总线执行直接存储器数据传输。当CPU和DMA同时访问相同的目标(RAM或外设)时,DMA请求可能会停止 CPU访问系统总线达若干个周期,总线仲裁器执行循环调度,以保证CPU至少可以得到一半的系统总线(存储器或外设)带宽。

在发生一个事件后,外设发送一个请求信号到DMA控制器。DMA控制器根据通道的优先权处理请求。当DMA控制器开始访问外设的时候,DMA控制器立即发送给外设一个应答信号。当从DMA控制器得到应答信号时,外设立即释放它的请求。一旦外设释放了这个请求,DMA控制器同时撤销应答信号。如果发生更多的请求时,外设可以启动下次处理。

总之,每个DMA传送由3个操作组成:

1. 从外设数据寄存器或者从DMA_CMARx寄存器指定地址的存储器单元执行加载操作。

2. 存数据到外设数据寄存器或者存数据到DMA_CMARx寄存器指定地址的存储器单元。

3. 执行一次DMA_CNDTRx寄存器的递减操作。该寄存器包含未完成的操作数目。

仲裁器根据通道请求的优先级来启动外设/存储器的访问。优先级分为两个等级:软件(4个等级:最高、高、中等、低)、硬件(有较低编号的通道比拥有较高编号的通道有较高的优先权)。

可以在DMA传输过半、传输完成和传输错误时产生中断。

STM32中DMA的不同中断(传输完成、半传输、传输完成)通过“线或”方式连接至NVIC,需要在中断例程中进行判断。

进行DMA配置前,不要忘了在RCC设置中使能DMA时钟。STM32的DMA控制器挂在AHB总线上。

DMA总共有7个通道,各个通道的DMA映射关系如下:

外设的事件连接至相应DMA通道,每个通道均可以通过软件触发实现存储器内部的DMA数据传输(M2M模式)

Tips:库2.0中函数RCC_AHBPeriphClockCmd的参数由“RCC_AHBPeriph_DMA”改成“RCC_AHBPeriph_DMA1”(如果是DMA1控制器的话)。

DMA的传输标志位(CHTIFx、CTCIFx、CGIFx)由硬件设置为“1”,但需要软件清零,在中断服务程序中清除。当CGIFx(全局中断标志位)清零后,CHTIFx 和 CTCIFx均清零。

 

过程:怎样启用DMA?首先,众所周知的是初始化,任何设备启用前都要对其进行初始化,要对模块初始化,还要先了解该模块相应的结构及其函数,以便正确的设置;由于DMA较为复杂,我就只谈谈DMA的基本结构和和常用函数,这些都是ST公司提供在库函数中的。

1、 下面代码是一个标准DMA设置,当然实际应用中可根据实际情况进行裁减:

DMA_DeInit(DMA_Channel1);

上面这句是给DMA配置通道,根据ST提供的资料,STM3210Fx中DMA包含7个通道(CH1~CH7),也就是说可以为外设或memory提供7座“桥梁”(请允许我使用桥梁一词,我觉得更容易理解,哈哈,别“拍砖”呀!);

DMA_InitStructure.DMA_PeripheralBaseAddr = ADC1_DR_Address;

上面语句中的DMA_InitStructure是一个DMA结构体,在库中有声明了,当然使用时就要先定义 了;DMA_PeripheralBaseAddr是该结构体中一个数据成员,给DMA一个起始地址,好比是一个buffer起始地址,数据流程是:外设 寄存器à DMA_PeripheralBaseAddàmemory中变量空间(或flash中数据空间等),ADC1_DR_Address是我定义的一个地址 变量;

DMA_InitStructure.DMA_MemoryBaseAddr = (u32)ADC_ConvertedValue;

上面这句很显然是DMA要连接在Memory中变量的地址,ADC_ConvertedValue是我自己在memory中定义的一个变量;

DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;

上面的这句是设置DMA的传输方向,就如前面我所说的,DMA可以双向传输,也可以单向传输,这里设置的是单向传输,如果需要双向传输:把DMA_DIR_PeripheralSRC改成DMA_DIR_PeripheralDST即可。

DMA_InitStructure.DMA_BufferSize = 2;

上面的这句是设置DMA在传输时缓冲区的长度,前面有定义过了buffer的起始地址:ADC1_DR_Address ,为了安全性和可靠性,一般需要给buffer定义一个储存片区,这个参数的单位有三种类型:Byte、HalfWord、word,我设置的2个 half-word(见下面的设置);32位的MCU中1个half-word占16 bits。

DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;

上面的这句是设置DMA的外设递增模式,如果DMA选用的通道(CHx)有多个外设连接,需要使用外设递增模式:DMA_PeripheralInc_Enable;我的例子里DMA只与ADC1建立了联系,所以选用DMA_PeripheralInc_Disable

DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;

上面的这句是设置DMA的内存递增模式,DMA访问多个内存参数时,需要使用DMA_MemoryInc_Enable,当DMA只访问一个内存参数时,可设置成:DMA_MemoryInc_Disable。

DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;

上面的这句是设置DMA在访问时每次操作的数据长度。有三种数据长度类型,前面已经讲过了,这里不在叙述。

DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;

与上面雷同。在此不再说明。

DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;

上面的这句是设置DMA的传输模式:连续不断的循环模式,若只想访问一次后就不要访问了(或按指令操作来反问,也就是想要它访问的时候就访问,不要它访问的时候就停止),可以设置成通用模式:DMA_Mode_Normal

DMA_InitStructure.DMA_Priority = DMA_Priority_High;

上面的这句是设置DMA的优先级别:可以分为4级:VeryHigh,High,Medium,Low.

DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;

上面的这句是设置DMA的2个memory中的变量互相访问的

DMA_Init(DMA_Channel1,&DMA_InitStructure);

前面那些都是对DMA结构体成员的设置,在次再统一对DMA整个模块做一次初始化,使得DMA各成员与上面的参数一致。

DMA_Cmd(DMA_Channel1,ENABLE);

哈哈哈!这一句我想我就不罗嗦了,大家一看就明白。

至此,整个DMA总算设置好了,但是,DMA通道又是怎样与外设联系在一起的呢?哈哈,这也是我当初最想知道的一个事情,别急!容我想喝口茶~~~~~~哈哈哈!

要使DMA与外设建立有效连接,这不是DMA自身的事情,是各个外设的事情,每个外设都有 一个xxx_DMACmd(XXXx,Enable )函数,如果使DMA与ADC建立有效联系,就使用ADC_DMACmd(ADC1,Enable); (这里我启用了ADC中的ADC1模块)。

 

一个简单的例子 transfer  a word data buffer from FLASH memory to embedded SRAM memory.
在V3.1.2库的位置
STM32F10x_StdPeriph_Lib_V3.1.2\Project\STM32F10x_StdPeriph_Examples\DMA\FLASH_RAM


DMA_DeInit(DMA1_Channel6);
  //peripheral base address
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)SRC_Const_Buffer;
  //memory base address   
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)DST_Buffer;
  //数据传输方向    Peripheral is source               
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
//缓冲区大小 Number of data to be transferred (0 up to 65535).数据传输数目     
DMA_InitStructure.DMA_BufferSize = BufferSize;
   // the Peripheral address register is incremented       
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Enable;
  //the memory address register is incremented
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
//the Peripheral data width       
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Word; 
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Word;
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
//the DMAy Channelx will be used in memory-to-memory transfer
//DMA通道的操作可以在没有外设请求的情况下进行,这种操作就是存储器到存储器模式。
DMA_InitStructure.DMA_M2M = DMA_M2M_Enable;   
DMA_Init(DMA1_Channel6, &DMA_InitStructure);


DMA_ITConfig(DMA1_Channel6, DMA_IT_TC, ENABLE);



DMA_Cmd(DMA1_Channel6, ENABLE);
=======================================================================

外设的DMA请求映像


要使DMA与外设建立有效连接,这不是DMA自身的事情,是各个外设的事情,每个外设都有 一个

xxx_DMACmd(XXXx,Enable )函数,如果使DMA与ADC建立有效联系,就使用 ADC_DMACmd

(ADC1,Enable); (这里我启用了ADC中的ADC1模块)。


DMA_DeInit(DMA1_Channel1);
DMA_InitStructure.DMA_PeripheralBaseAddr = ADC1_DR_Address;
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)&AD_Value;   
//u16  AD_Value[2];   不加&应该也可以  数组名 代表地址
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
DMA_InitStructure.DMA_BufferSize = 2;      //############## 改了
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;  //##############     改了
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel1, &DMA_InitStructure);


DMA_Cmd(DMA1_Channel1, ENABLE);


ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
ADC_InitStructure.ADC_ScanConvMode = ENABLE;
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfChannel = 2;      //##############     改了
ADC_Init(ADC1, &ADC_InitStructure);
//内部温度传感器  添加这一句 

ADC_TempSensorVrefintCmd(ENABLE);
//##############     改了

//################ Channel 10(电位器)
ADC_RegularChannelConfig(ADC1, ADC_Channel_10, 1, ADC_SampleTime_13Cycles5);
//###### 内部温度传感器  Channel 16 ###################
ADC_RegularChannelConfig(ADC1, ADC_Channel_16, 2, ADC_SampleTime_55Cycles5);

  使能ADC1的DMA请求映像
  ADC_DMACmd(ADC1, ENABLE);


ADC_Cmd(ADC1, ENABLE);

   //使用之前一定要校准
ADC_ResetCalibration(ADC1);

while(ADC_GetResetCalibrationStatus(ADC1));


ADC_StartCalibration(ADC1);

while(ADC_GetCalibrationStatus(ADC1));

 
ADC_SoftwareStartConvCmd(ADC1, ENABLE);

关键字:STM32  DMA

编辑:什么鱼 引用地址:http://www.eeworld.com.cn/mcu/2018/ic-news102141952.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:STM32学习之:FMC-扩展外部SDRAM
下一篇:最后一页

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

用STM32F407玩控制—系统组成

原本想在嵌入式操作系统的基础上玩控制,但有几个原因放弃了这一想法,1兴趣转移,2觉得在“裸装”单片机是玩控制没啥不好,3 STM32F407也应该属于当前主流单片机了,就控制上应用来说足够足够了,不像51单片机增加一个变量都要横算竖算,因此,玩到STM32F407也可以了,没必要再进一步深入了,再说,也想玩别的东西了,因此,这个系列的博文是个“早产儿”,4终极原因是最近一直感到眼睛干涩,可能是手机、平板电脑看的太多,而我为了方便,通常都是看电子书,这样一来只能尽量少看手机和平板电脑了,什么兴趣也得归零了,好,就此打住,转入正题,玩控制当然得有控制对象(被控对象),但你不可能有一家化工厂或火电厂给你去作试验,甚至连一个马达也不可能
发表于 2018-10-20
用STM32F407玩控制—系统组成

用STM32F407玩控制—不完全微分PID控制

以满足过程控制的要求,在STM32F407中用定时器来实现周期循环,具体是用TIM_GetITStatus函数实现定时中断,pid控制算法就放在这个函数条件下,TIM_GetITStatus的用法如下(参见《F407固件库手册》):ITStatus TIM_GetITStatus  ( TIM_TypeDef *  TIMx,   uint16_t  TIM_IT  )  Checks whether the TIM interrupt has occurred or not.Parameters:TIMx
发表于 2018-10-20
用STM32F407玩控制—不完全微分PID控制

用STM32F407玩控制—史密斯预估补偿控制

过程对象模型发生变化,蒸汽中含水量也会引起过程对象模型发生变化,这些都不一而足,而恰恰史密斯预估补偿控制对模型误差十分敏感,因而有了各种改进型,其中一种是增益自适应补偿方案,如图2所示,它增加了一个除法器、一个微分导前环节和一个乘法器,在这种方案中,就是模型有误差,控制效果仍然较好,见图2,  通常来说,模型不准的情况下,预估器中时间延滞要小一些,小的物理含义是提早通知调节器。由于过程控制中通常将过程对象近似为一阶系统加纯滞后环节,那么在STM32F407上实现史密斯预估补偿控制,需要做:1.仿真一个一阶系统环节,2.仿真一个纯滞后环节,3.仿真一个微分导前环节,一阶系统环节仿真前面已经说过,这里略去,纯滞后环节
发表于 2018-10-20
用STM32F407玩控制—史密斯预估补偿控制

用STM32F407玩控制—自适应模糊PID控制

,我们采用的隶属度函数如图3所示,然后在此基础上进行模糊推理,通常这一步由MATLAB的M代码实现,由此获得Δkp、Δki、Δkd的查询表如4所示,其曲面输出图见图3,在C语言中,查询表用两维数组来实现,将偏差e和偏差变化率ec分别乘上比例因子ke、kec就可得到数组下标,从而可以进行两维数组的引用,因此在C语言中的编程可以说是非常简单的,复杂的是前面那部分,我们在STM32F407中实现的自适应模糊PID控制器,其控制效果如5所示,从图中可以看出这是一个大纯滞后系统,控制效果还相当好,实际上要用好自适应模糊PID控制器,还不是一件容易的事,首先的要确定合适的初始PID值,这一点,如果人工整定手气不佳,可以用自动整定来帮忙,其次得调整
发表于 2018-10-20
用STM32F407玩控制—自适应模糊PID控制

用STM32F407玩控制—神经网络PID控制

在玩51单片机时就想玩神经网络PID控制,但51单片机的数据存储器地址空间很小,就普通的应用,要增加一个变量尚且“抖抖哗哗”,更遑论玩神经网络PID控制,那可需要非常多的变量,而玩STM32F407就不存在这方面问题了。转入正题,大部分书上的神经网络PID控制,讲的是BP神经网络PID控制,举的例子都是非线性系统,通常仿真效果都不错,但BP神经网络PID控制有一个限制,就是kp、ki、kd小于1,这就限制了它的应用范围,如果kp、ki、kd>1,那就得改进,而刘金琨的《先进PID控制 MATLAB仿真》一书中讲了一种RBF神经网络PID控制,它突破了前者的限制,其原理如图1所示,图中RBF NN1神经网络根据偏差e
发表于 2018-10-20
用STM32F407玩控制—神经网络PID控制

STM32学习——AD单通道与多通道转换(DMA)

;GPIO_InitStructure);} 3.2设置完端口后下一步当然是对AD进行初始化:        这里需要补充一个知识点DMA,DMA就相当与CPU的一个秘书,他的作用就是帮CPU减轻负担的。说的再具体点就是帮CPU来转移数据的。我们都知道,AD每次转换结束后会将转换的结果放到一个固定的寄存器里,以往我们如果想将该寄存器中的值赋给某一变量时会用到赋值语句,如果不用DMA,则赋值语句便要CPU来完成,CPU本来就要忙着处理其他事情,现在还要来解决赋值语句这么简单的问题,肯到会蛋疼。所以需要DMA这个秘书来帮他解决这个问题。由于DMA只是个秘书,所以比较笨
发表于 2018-10-20

小广播

何立民专栏

单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2018 EEWORLD.com.cn, Inc. All rights reserved