中国AI芯片爆发,架构创新迫在眉睫

2018-05-02 16:42:12编辑:王磊 关键字:AI芯片

人工智能(AI)爆发性增长是以强大的计算能力为基础的,而提供计算力的载体是芯片。近年来国内得到资本热烈追捧的独角兽公司多与AI芯片有着密切的关系,亦从侧面证明了AI芯片的重要性与广阔的发展前景。然而,随着越来越多新创公司、互联网公司和传统芯片公司开始进入 AI芯片领域,其中蕴含的风险也需引起重视。AI 芯片会是中国集成电路产业弯道超车的好机会吗?其中含有哪些风险?如何才能抓住这次难得的产业机遇?

  

尴尬的产业链定位

  

要说如今科技圈什么最火,人工智能肯定是其中之一。而核心芯片则是决定一个新的计算时代的基础。从源头上掌控核心芯片架构将取得先发优势,对于取得一个新计算时代主导权有着非常重要的意义。也正是基于这样的考虑,谷歌、微软、亚马逊、IBM等全球科技巨头才纷纷投入巨资加速人工智能核心芯片的研发,目标在于抢占新计算时代的战略制高点,掌控人工智能时代主导权。

  

中国对于人工智能芯片产业同样高度重视。工信部正式印发的《促进新一代人工智能产业发展三年行动计划(2018-2020年)》中,着重强调要在智能传感器、神经网络芯片、开源开放平台几个领域率先取得突破。根据前瞻产业研究院发布的《2018-2023年中国芯片行业市场需求与投资规划分析报告》,2016年全球人工智能芯片市场规模达到36亿美金,预计到2021年将达到111亿美金,年复合增长率达到25%。结合我国人工智能市场规模,推算2016年我国人工智能芯片市场规模约为15亿元,到2022年市场规模将达到50亿元左右,增长迅猛,发展空间巨大。

  

在看好AI芯片发展前景的情况下,吸引了越多越多互联网公司和 传统芯片公司进入AI芯片领域,其中蕴含的风险也需引起人们注意。在近日召开的“2018年半导体市场年会”上,清华大学微电子所所长魏少军在演讲时笑称:“有投资界人士问我,应不应该投资AI芯片。我的回答是‘投资可以,但一定不要成为那个持最后一棒的’。”

  

那么,中国企业投入AI芯片将会面临哪些挑战呢?从产业链角度观察,人工智能包括了从芯片器件、计算设备、程序平台到大数据、功能层、应用端等复杂结构。在这样一个产业生态中,一些有实力的国际互联网巨头,如谷歌、Facebook、亚马逊、百度以及苹果公司,是以垂直整合模式介入的,它们成为最有实力的玩家。英特尔、高通、英伟达等国际芯片龙头则以整合芯片、计算以及部分软件程序为发展策略,力求扮演硬件设施平台供应商的角色。一些有实力的终端品牌公司,包括近年来得到快速发展的中国智能手机厂商,如华为、小米、VIVO、OPPO,希望AI成为终端设备供应商。

  

在这样的产业生态里,中国AI芯片厂商定位相对尴尬。在技术上他们尚难完全与英伟达、英特尔这样为云端设备提供人工智能计算解决方案的厂商展开竞争,更多发展机会存在于终端市场,即面向不同应用端,提供针对性的芯片或者IP解决方案。问题在于,目前为止整个AI产业依然受到缺少“杀手级”应用的困扰。如果去除智能驾驶、智能汽车、智能监控、人脸识别、语音识别少数几个应用市场,我们就很难再找到AI的典型应用场景了,特别是缺少与人们工作生活密切相关,又非AI支持不可的应用市场。

  

这样,一个重要问题就会出现——是否存在像通用CPU那样独立的AI处理器?如果存在,它的架构是怎样的?如果不存在的话,那么中国AI芯片厂商,向上很难与国际巨头竞争云端市场,所立足的终端市场又存在细分化、碎片化,缺少杀手级应用的挑战。其结果或许真的会像魏少军所指出的那样:“以满足特定应用为主要目标的中国AI芯片,未来很可能只能以IP核的形式存在,最终被各种各样的SoC所集成。”

  

如此,今天的部分,甚至是大部分AI芯片创业者将成为这场技术变中的“先烈”。

  

新时代寻求IC设计新思路

  

在这样的挑战面前,架构创新成为中国AI芯片面临的一个不可回避的课题——针对当前AI产业现状,开发适应市场的芯片架构。尽管这样的创新工作将非常艰难。

  

对此,魏少军提出了“软件定义芯片”的概念。从感知、传输到处理,再到传输、执行,这是AI芯片的基本逻辑。软件是实现智能的核心,芯片是支撑智能的基础。其中,软件是实现智能的载体。技术上要求智能软件具有自己学习的能力,形成知识和经验的能力,持续改进和优化的能力,思维逻辑推理的逻辑以及做出正确判断的逻辑等。而智能芯片则需要承载所需的计算,要求其具有高性能的计算能力,多任务并行计算能力,极高的能量效率,灵活高效的存储能力,实时动态功能变换能力等。两者的联动,将重新定义AI芯片的设计理念,使AI芯片的设计更具灵活性,也在面向不同AI应用需求时更具可操作性。

  

Synopsys中国董事长兼全球副总裁葛群也表达了同样的看法:“以前芯片设计中硬件与软件的界限比较清晰,一般采用分层设计和优化的方法,这有利于简化问题。然而,在今天的AI应用中已经很难再将它们分开处理了。也就是说,开发一款优秀的芯片和硬件产品必须考虑软件方面的配合和系统层面的配合,甚至打破层次界限,进行深度优化。Nvidia的CUDA和GPU,Google的Tensorflow和TPU的成功都是很好的例子。”

  

事实上,EDA工具和AI存在密切的互动关系,对AI芯片的架构创新将发挥至关重要的作用。无论在云端还是终端设备上,在差异化的应用需求越来越多地影响芯片设计之际,针对云端AI训练、自动驾驶、安防监控和各种智能IoT设备的解决方案需要从应用软件、操作系统、硬件架构、IP、低功耗、安全性、验证和测试等方面适应AI应用的特殊需求,更为强调整个系统综合的软硬件效率、安全性和可靠性。EDA工具作为芯片设计的基础平台,将会更多地把AI应用作为关键的场景,支持芯片设计者更好地完成各种AI算法和应用在芯片上的高效实现。

  

根据葛群的介绍,Synopsys从1986年初创开始,就采用人工智能的思想支撑EDA、芯片和系统的研发,目前正在积极探索设计方法学上的创新,推动AI芯片设计能力的提高。2017年Synopsys设立了全球人工智能实验室,就是希望在更加开放的平台上,与业界共同探索支持人工智能技术落地所必须的AI芯片软硬件协同优化等新问题,寻求更为有效的方法学、工具和解决方案。

  

基于其应用场景的特殊性, AI芯片应当具备以下的基本要素。可编程能力,以适应算法的演进和应用的多样化;构架能够动态重构,在不明显降低效率的前提下,能够适应不同的算法;高效的架构变换能力;实现高效计算和存储,低功耗、低延迟;满足低成本、小尺寸的要求,以便能够进入家电和消费类电子、移动设备和物联网终端市场;应用开发简便。

  

政府与企业共同推进

  

今年 3 月初“人工智能”被写入《政府工作报告》,强调要加强新一代 AI 研发的应用,在医疗、养老、教育、文化和体育等多领域推进 AI 的应用和落地。这显示了中国政府对于人工智能芯片产业的高度重视。也抓住了当前AI产业发展中的关键环节。如果说中国已经逐步发展成为全球AI产业的中心之一,那么应用缺乏、数据环境和人才紧缺,仍然是制约中国AI芯片产业发展面临的主要难题。在政策上,从上述三个层面发力,将可有效推进AI芯片产业的发展。

  

中国工程院院士倪光南表示:“人工智能是未来很重要的一个发展方向。因为人工智能还是我们人创造出来的,因此应该更好地为人类服务,帮助人类摆脱繁杂的工作,把重复性的劳动交给人工智能,人类去做更多有创造力的工作。”

  

葛群指出:“这一轮的人工智能爆发是与大数据共生的,离开有效的数据,人工智能尤其是深度学习是很难取得进步的。现在各个行业与不同企事业单位中存在着各种各样的数据孤岛,而这些数据又都是推进人工智能的关键因素。政府如能推动打破信息孤岛,将可极大促进人工智能行业的发展,对于AI芯片产业也具有巨大的带动作用。”

  

无论是芯片、算法,还是数据、应用、人才,任何短板都将使人工智能难以实现快速均衡的发展。国内厂商目前更应该保持一定的定力以及工匠之心,基础研究千万不能落下。政府则需要从国家层面进行政策引导和实际的支持。唯有政府和企业共同推进,才能让中国的人工智能与半导体产业走得更远。

关键字:AI芯片

来源: 中国电子报 引用地址:http://www.eeworld.com.cn/manufacture/article_2018050224980.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:高华健、张锋等6名旅美学者当选美国科学院院士
下一篇:台积电南京厂16纳米量产,比特大陆为首批客户

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

深鉴不见 AI芯片战局“深不可见”?

今日凌晨,国内AI芯片独角兽——深鉴科技宣布被FPGA开山鼻祖、美国赛灵思(Xilinx)公司收购,具体交易金额未知。此事在业界引起巨大反响,赛灵思方面对集微网独家表示,赛灵思从FPGA器件向自适应计算加速平台提供商演变的战略,就是要加速从云到端应用上FPGA 加速技术的部署,经深鉴科技优化的神经网络剪枝技术运行在赛灵思FPGA 器件上,可实现突破性的性能和行业最佳的能效,这是赛灵思新CEO继ACAP三月的发布会后,提升机器学习研发能力,推进战略发展的重大一步。收购水道渠成?其实两者已有多年的交情。深鉴成立于2016年3月3日,由清华电子系背景的汪玉、韩松、姚颂、单羿一同创办,专注于以FPGA实现AI落地,由于深厚的AI
发表于 2018-07-19 15:58:37

押注AI芯片 百度的L4级自动驾驶靠谱么

上周,百度仍如期带来了他们自己允诺的无人驾驶量产车,一同而来的还有多个吸人眼球的信息:全球首款L4级别无人驾驶驾驶巴士,并已实现量产能力;将出口国外进行商业化运营;同时,中国自主研发的首个AI芯片“昆仑”发布,秒杀同级。消息振奋,举臂欢呼,当日在很多媒体的报道中都提到:百度把吹的牛实现了,百度是全球首家实现无人驾驶汽车量产的公司,中国芯有救了!但在刷屏式的新闻背后,一些质疑声音也随之出现:这辆L4级的无人驾驶到底能干嘛?缺“芯”的中国半导体产业,这次真的能成功么?百度L4级无人驾驶巴士到底能干嘛?此次百度已经实现量产的L4级无人驾驶巴士名叫“阿波龙”,与金龙客车合作,由后者负责生产。阿波龙车身长4.3米,宽2米,由于没有驾驶位,车厢
发表于 2018-07-17 11:32:10
押注AI芯片 百度的L4级自动驾驶靠谱么

AI芯片,为何现在成为新军备竞赛?

  欢迎关注“创事记”的微信订阅号:sinachuangshiji  文/雷刚  来源:量子位(QbitAI)  一场新的军备竞赛已经打响,不在地面,不在空中,它将是虚拟网络世界新一代基石,也是AI时代连接虚拟和现实的核心。  没错,AI芯片,正在引发一场无形但声势浩大的军备竞赛。  而且美国and中国,仍然是这场竞赛里的国家主角。  到底都有哪些“种马”?AI芯片又为何在当前风生水起?这样的竞合会把世界带往何方?  两大类玩家  要宏观了解AI芯片,可以粗略分为两大类玩家。  第一类,老霸主。  比如IBM已经在去年发布了一款AI处理器,用以PK英伟达的GPU;  英特尔也在通过收购加速AI芯片开发,并提供通用化的AI
发表于 2018-07-17 11:20:19
AI芯片,为何现在成为新军备竞赛?

AI芯片黑科技盘点

比。对于云端数据中心的芯片,同样也需要很好的能效比,因为散热成本是数据中心的重要开销,因此需要芯片散热不能太大。在大数据和深度学习应用中,数据间往往都是独立的,因此可以并行计算。传统的CPU并行计算能力有限,因此难以实现算力的需求。GPU虽然有很高的算力(10TOPS数量级)而且在数据中心已经得到了应用,但是其功耗也很大(几百瓦),而且其架构决定了它无法做到终端需要较低功耗(如100mW以下)的场景。同时,即使在数据中心领域,因为GPU设计的初衷是为了图像渲染而并非大数据运算,因此也存在很大的改善空间。因此,我们看到了许多在AI芯片领域来自学术界和来自工业界的项目,试图挑战CPU和GPU。这些项目大体可以分为两类,一类是基于传统
发表于 2018-07-16 14:56:44
AI芯片黑科技盘点

“AI芯片”还处于草莽时代,狂奔中“泡沫”待挤

人工智能正在改变各行各业,而芯片是实现人工智能的载体。2018年,资本对半导体芯片的热情被AI技术彻底点燃,不管是巨头公司还是创业公司、传统制造公司还是互联网公司,都对芯片热情高涨。5月到7月,云知声、出门问问、Rokid、百度纷纷发布AI芯片或芯片模组,思必驰确认正在打造AI语音芯片,深鉴科技对外宣布其AI芯片将于今年下半年面市,云知声创始人兼CEO黄伟甚至用“不做芯片,必死”来表达自己做AI芯片的决心。然而,“到现在为止,全球还没有出现一款真正的AI芯片,因为真正的人工智能还远未能实现。”异构智能中国区总经理周斌的这番话代表了部分业内人士的观点。《IT时报》记者采访大量AI界人士后发现,对于AI芯片的概念,目前全球并没有形
发表于 2018-07-16 14:40:29

国产AI芯片遍地开花,可是否会沦为"PPT芯片"?

国产AI芯片遍地开花,可是否会沦为PPT芯片?7月4日,百度创始人兼董事长李彦宏在Baidu Crea-te2018百度AI开发者大会上正式发布百度自研的中国第一款云端全功能AI芯片“昆仑”,其中包含训练芯片昆仑818-300,推理芯片昆仑818-100。“市场上现有的解决方案和技术不能够满足其对AI算力的要求是百度决定自己研发芯片的原因,”据李彦宏介绍,“昆仑芯片的计算能力跟原来用FPGA做的芯片相比,计算能力有30倍左右的提升,可适用于语音、图像、自动驾驶等很多方面。”但南都记者在现场了解到,该款芯片目前仍在试生产中,具体量产时间表尚未可知。无独有偶,手机厂商华为、美图,语音识别厂商出门问问、若琪都开始往上游芯片延伸。中美贸易
发表于 2018-07-06 10:54:13

小广播

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 市场动态 半导体生产 材料技术 封装测试 工艺设备 光伏产业 平板显示 电子设计 电子制造 视频教程

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2018 EEWORLD.com.cn, Inc. All rights reserved