彭练矛-张志勇团队实现首个千兆赫兹碳纳米管集成电路

2017-12-15 11:17:48编辑:冀凯 关键字:碳纳米管

集成电路芯片遵从摩尔定律,通过缩减晶体管尺寸,不断提升性能和集成度,成本得以降低;然而,进一步发展却受到来自物理极限、功耗和制造成本的限制,需要采用新兴信息器件技术支撑未来电子学的发展。碳纳米管被认为是构建亚10nm晶体管的理想材料;理论和实验研究均表明相较硅基器件而言,其具有5~10倍的本征速度和功耗优势,性能接近由量子测不准原理所决定的电子开关的极限,有望满足后摩尔时代集成电路的发展需求。但是,由于寄生效应较大,实际制备的碳管集成电路工作频率较低(一般在兆赫兹以下,1MHz=106Hz),比硅基互补金属氧化物半导体(CMOS)电路的工作频率(千兆赫兹,即吉赫兹,1GHz=103MHz=109Hz)低几个数量级。在国际商业机器公司(IBM)研究人员2017年8月发表的基于碳管阵列的环形振荡器的研究工作中,振荡频率达282MHz,仍远远低于预期。因此,大幅度提升碳纳米管集成电路的工作频率成为发展碳纳米管电子学的重要挑战。


北京大学信息科学技术学院、纳米器件物理与化学教育部重点实验室彭练矛教授-张志勇教授团队在碳纳米管电子学领域潜心研究十几年,发展了一整套碳管CMOS技术,前期已实现亚10nm CMOS器件以及中等规模集成电路。日前,他们通过对碳管材料、器件结构/工艺和电路版图的优化,在世界上首次实现工作在千兆赫兹频率的碳管集成电路,有力推动了碳纳米管电子学的发展。


团队首先通过优化碳管材料、器件结构和工艺,提升碳纳米管晶体管的跨导和驱动电流;对于栅长为120nm的晶体管,在0.8V的工作电压下,其开态电流和跨导分别达到0.55mA/μm和0.46mS/μm,其中跨导为已发表碳管器件的最高值。基于如此性能的器件,成功实现了五级环振,振荡频率达680MHz。而后,团队进一步优化器件结构,在源漏和栅之间引入空气侧墙,以减少源漏寄生电容;同时增加栅电阻的厚度,以减少寄生电阻,振荡频率达到2.62GHz。在此基础上,团队通过缩减碳管晶体管栅长和优化电路版图,将五级环振振荡频率进一步提升至5.54GHz,比此前发表的最高纪录(282MHz)提升了几乎20倍;而120nm栅长碳管器件的单级门延时仅为18ps,在没有采用多层互联技术的前提下,速度已接近同等技术节点的商用硅基CMOS电路。更为重要的是,该技术所采用的碳纳米管薄膜作为有源区材料,可实现高性能碳管环振电路的批量制备,且电路成品率为60%,环振的平均振荡频率为2.62GHz,表征差为0.16GHz,表现出较好的性能均一性。

《自然·电子学》官网截屏与文中描述的碳纳米管环形振荡电路:(a)五级环振电路扫描电镜照片;(b)5.54 GHz的碳管环振电路;(c)环振频率的统计直方图;(d)与其他碳管材料、二维材料和硅基环振的单级门延时对比。


2017年12月11日,上述工作以题为《基于碳纳米管薄膜的千兆赫兹集成电路》(Gigahertz integrated circuits based on carbon nanotube films)的论文在线发表于《自然·电子学》(Nature Electronics, DOI:10.1038/s41928-017-0003-y),即将正式刊载于该期刊的创刊号,这也是北京大学在该期刊发表的首篇论文。信息学院2013级博士研究生仲东来为第一作者,张志勇教授和彭练矛教授为共同通讯作者。这项研究工作不仅极大推进了碳纳米管集成电路的发展,更表明基于现有的碳管材料,通过简单工艺已可能实现性能与商用单晶硅基CMOS性能相当的集成电路;如果采用更为理想的材料(例如高密度碳管平行阵列)和更高级的加工工艺,则有望推动碳纳米管技术在速度和功耗等方面全面超过硅基CMOS技术。


该项研究得到国家重点研发计划、国家自然科学基金、北京市科技计划和建设世界一流大学(学科)和特色发展引导专项的资助。


关键字:碳纳米管

来源: 北京大学 引用地址:http://www.eeworld.com.cn/manufacture/article_2017121520681.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:新纶科技“联姻”阿克伦,布局下一代柔性显示材料
下一篇:高通研发NanoRings技术,有望在7nm工艺下解决电容问题

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

3D畅想碳纳米管芯片:超长手机续航 皮肤贴合传感器

近日,国内科技产业缺少核心芯片技术一事引发关注。此前据媒体2017年报道,北京大学教授彭练矛带领团队成功使用碳纳米管制造出芯片晶体管,工作速度5-10倍于同尺寸的硅基晶体管,能耗只有其10分之1。该成果于2017年初刊登于《科学》杂志。不过彭练矛称,改技术要从实验品变成产品,还需攻破许多难关。
发表于 2018-04-20 11:23:22
3D畅想碳纳米管芯片:超长手机续航 皮肤贴合传感器

单壁碳纳米管网状结构或将延长锂电池使用寿命

据外媒报道,在反复充放电后,锂电池材料周边会形成一个非活跃层(inactive layer),影响电池的性能。为此,一直化学家组成的研究团队研究出新方法,防止锂电池阳极材料分解。该团队由乔治亚理工大学(Georgia Tech)的Elsa Reichmanis及纽约州立大学石溪分校(Stony Brook University)的Amy C. Marschilok牵头,制作了单壁碳纳米管(single-walled carbon nanotube,SWNT)网状结构,可利用PPBT(poly[3-(potassium-4-butanoate) thiophene])将SWNT固定在电池材料上。PPBT的羧酸
发表于 2018-03-24 18:11:10
单壁碳纳米管网状结构或将延长锂电池使用寿命

微流体技术+碳纳米管纤维=更安全的脑内植入

  据麦姆斯咨询报道,莱斯大学(Rice University)的研究人员开发出一种新型装置,利用微流体技术在大脑中植入柔韧的导电碳纳米管纤维,以帮助记录神经元活动,有望取代可能会损伤脑组织的传统植入方法。下面就随嵌入式小编一起来了解一下相关内容吧。  莱斯大学的研究人员表示,植入技术能够改善通过电极感知神经元信号的治疗方法,为癫痫病和其它相关疾病患者展开治疗。同样,纳米管电极也能帮助研究人员和科学家们找出认知过程背后的机制,使得病人能够看到、听到并控制义肢。  该装置利用快速移动的流体所产生的力将绝缘柔性纤维轻轻地推入脑组织中而不变形。该方法可以取代传统方法——使用坚硬的穿梭物和生物降解护套将电线导入大脑,在此过程中可能会导致
发表于 2018-03-14 13:57:33
微流体技术+碳纳米管纤维=更安全的脑内植入

[5纳米碳纳米管CMOS器件]入选高校十大科技进展

  日前,由教育部科学技术委员会组织评选的2017年度“中国高等学校十大科技进展”经过高校申报和公示、形式审查、学部初评、项目终审等评审流程后在京揭晓。下面就随网络通信小编一起来了解一下相关内容吧。  由北京大学申报的”5纳米碳纳米管CMOS器件“入选。  芯片是信息时代的基础与推动力,现有CMOS技术将触碰其极限。碳纳米管技术被认为是后摩尔时代的重要选项。  理论研究表明,碳管晶体管有望提供更高的性能和更低的功耗,且较易实现三维集成,系统层面的综合优势将高达上千倍,芯片技术由此可能提升至全新高度。  北京大学电子学系彭练矛教授团队在碳纳米管CMOS器件物理和制备技术、性能极限探索等方面取得重大突破,放弃传统掺杂工艺,通过控制
发表于 2018-01-02 16:41:39
[5纳米碳纳米管CMOS器件]入选高校十大科技进展

[5纳米碳纳米管CMOS器件]入选高校十大科技进展

电子网消息,日前,由教育部科学技术委员会组织评选的2017年度“中国高等学校十大科技进展”经过高校申报和公示、形式审查、学部初评、项目终审等评审流程后在京揭晓。由北京大学申报的”5纳米碳纳米管CMOS器件“入选。芯片是信息时代的基础与推动力,现有CMOS技术将触碰其极限。碳纳米管技术被认为是后摩尔时代的重要选项。理论研究表明,碳管晶体管有望提供更高的性能和更低的功耗,且较易实现三维集成,系统层面的综合优势将高达上千倍,芯片技术由此可能提升至全新高度。北京大学电子学系彭练矛教授团队在碳纳米管CMOS器件物理和制备技术、性能极限探索等方面取得重大突破,放弃传统掺杂工艺,通过控制电极材料来控制晶体管的极性,抑制短沟道效应,首次实现
发表于 2017-12-31 21:24:28
[5纳米碳纳米管CMOS器件]入选高校十大科技进展

[5纳米碳纳米管CMOS器件]入选高校十大科技进展

集微网消息,日前,由教育部科学技术委员会组织评选的2017年度“中国高等学校十大科技进展”经过高校申报和公示、形式审查、学部初评、项目终审等评审流程后在京揭晓。由北京大学申报的”5纳米碳纳米管CMOS器件“入选。芯片是信息时代的基础与推动力,现有CMOS技术将触碰其极限。碳纳米管技术被认为是后摩尔时代的重要选项。理论研究表明,碳管晶体管有望提供更高的性能和更低的功耗,且较易实现三维集成,系统层面的综合优势将高达上千倍,芯片技术由此可能提升至全新高度。北京大学电子学系彭练矛教授团队在碳纳米管CMOS器件物理和制备技术、性能极限探索等方面取得重大突破,放弃传统掺杂工艺,通过控制电极材料来控制晶体管的极性,抑制短沟道效应,首次实现
发表于 2017-12-31 10:12:20
[5纳米碳纳米管CMOS器件]入选高校十大科技进展

小广播

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 市场动态 半导体生产 材料技术 封装测试 工艺设备 光伏产业 平板显示 电子设计 电子制造 视频教程

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2018 EEWORLD.com.cn, Inc. All rights reserved