datasheet

从器件的结温角度分析产品的可靠性

2018-11-07来源: EEWORLD作者: ZLG致远电子 关键字:致远电子  结温

工程师在设计一款产品时用了一颗9A的MOS管,量产后发现坏品率偏高,经重新计算后,换成5A的MOS管,问题就解决。为什么用电流裕量更小了,却能提高可靠性呢?本文将从器件的结温角度跟你说说产品的可靠性。


工程师在设计的过程中非常注意元器件性能上的裕量,却很容易忽视热耗散设计,案例分析我们放到最后说,为了帮助理解,我们先引入一个概念:


 

其中Tc为芯片的外壳温度,PD为芯片在该环境中的耗散功率,Tj表示芯片的结点温度,目前大多数芯片的结点温度为150℃,Rjc表示芯片内部至外壳的热阻,Rcs表示外壳至散热片的热阻,Rsa表示散热片到空气的热阻,一般功率器件用Rjc进行计算即可。


 


举个例子来说,大家常用的S8050在25℃(Tc)的最大耗散功率是0.625W,额定电流为0.5A,最高结点温度为150℃,此代入公式有:


 

从上面公式可以推算出Rja为200℃/W(Rja表示结点到空气的热阻)。假设芯片壳温(Tc)为55℃,热耗散功率有0.5W时,此刻芯片结点温度为:Tj=Tc+PD*Rjc代入得到155℃,已经超过了最高结温150℃了。故需要降额使用,然而降额曲线在数据手册中并未标注,所以小编只能自行计算。


在25℃(Tc)时有公式:25C=150C-0.625W×Rja恒成立。


把线性降额因子设为F,则在任意温度时有:

 

代入已知参数得到F>5mW/℃,一般为了满足裕量要求,降额因子往往取得更大才能满足可靠性设计要求。


由于小晶体管和芯片是不带散热器的,这时就要考虑壳体到空气之间的热阻。一般数据手册会给出Rja(结到环境之间的热阻)。那么三极管S8050,其最大功率0.625W是在其壳温25℃时取得的。倘若环境温度刚好为25℃,芯片自身又要消耗0.625W的功率,那么为了满足结点不超过150℃,唯一的办法就是让其得到足够好的散热,如下所示。


 


好了,我们把问题转回到最初的场效应管为什么需要从9A变成5A性能更可靠的问题上来,场效应管的损耗通常来自导通损耗与开关损耗两种,但在高频小电流条件下以开关损耗为主,由于9A的场效应管在工艺上决定了其栅极电容较大,需要较强的驱动能力,在驱动能力不足的情况下导致其开关损耗急剧上升,特别在高温情况下由于热耗散不足,导致结点温度超标引发失效。如果在满足设计裕量的条件下换成额定电流稍小的场管以后,由于两种场管在导通内阻上并不会差距太大,且导通损耗在高频条件下相比开关损耗来说几乎可以忽略不计,这样一来5A的场管驱动起来就会变得容易很多,开关损耗降下去了,使用5A场管在同样的温度环境下结点温度降低在可控范围,自然就不会再出现热耗散引起的失效了,当然遇到这种情况增强驱动能力也是一个很好的办法。


 


通常大多数芯片的结点温度是150℃,只要把结点温度控制在这个范围内并保持一定裕量,从热耗散的设计角度来说都是没有问题的,如果下次你找遍了芯片的器件性能指标均发现有一定裕量却无法找到失效原因时,不妨从热耗散的角度来发现问题,兴许能帮上大忙。

电源模块在实际应用中,通常面临着高温环境,因此在在设计电源时,本文只通过场效应管的结温来开题,真正的电源产品可靠性需要考虑所有器件的结温与可靠性,如果选用成品电源,不管是模块电源、普通开关电源、电源适配器等,这部分的工作一般都由电源设计厂家完成。


 

致远电子自主研发、生产的隔离电源模块已有近20年的行业积累,目前产品具有宽输入电压范围,隔离1000VDC、1500VDC、3000VDC及6000VDC等多个系列,封装形式多样,兼容国际标准的SIP、DIP等封装。同时致远电子为保证电源产品性能建设了行业内一流的测试实验室,配备最先进、齐全的测试设备,全系列隔离DC-DC电源通过完整的EMC测试,静电抗扰度高达4KV、浪涌抗扰度高达2KV,可应用于绝大部分复杂恶劣的工业现场,为用户提供稳定、可靠的电源隔离解决方案。



关键字:致远电子  结温

编辑:baixue 引用地址:http://www.eeworld.com.cn/manufacture/2018/ic-news110727174.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:TI魔力芯动课程,激发青少年的科技热情
下一篇:最后一页

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

致远电子:电机工况模拟测试及结果分析

随着现代工业自动化成熟度的提高,工程师倾向于模拟电机的实际工况周期,并通过仪器的设置完成温度、功率等参数的自动测试,本文就以实际安排来呈现电机工况模拟测试及结果分析。电机行业需要测试电机运行时温度变化,如温度不能超过某些限值;同时也需要测试电机电压、电流、功率等,并且需要将所有参数同时显示,以便于查看与控制。当然,电机特性的综合测试系统可以实现此测试需求,但是成本太高,同时不少测试场合的精度要求无需如此复杂。如果只是综合评估电参数及温度性能,使用DM100数据采集记录仪配合PA310功率计即可满足测试需求,既可以实现对于电机测试的自动控制,又能将所有信息同时显示在上位机软件中,下面重点介绍自动控制环节。 一、模拟工况测试
发表于 2018-11-07
致远电子:电机工况模拟测试及结果分析

ZLG致远电子推出一系列低成本多媒体解决方案

在IoT和互联网+的市场大潮中,各色智能设备层出不穷,产品个性化和差异化需求强烈,对此广州周立功单片机科技有限公司推出了一系列彩屏显示方案,用于提升产品的交互性和视觉冲击性。彩屏显示系列方案覆盖了从低分辨率320x240到高清的1280x720的多种显示需要。彩屏显示系列方案支持如下多种屏幕规格,搭载MCU实现多种场景应用:一、低成本彩屏显示方案该方案基于320x240的LCD开发,搭载Cortex-M4处理器。是针对嵌入式市场推出的一款小屏幕显示的方案,在不增加外部RAM的情况下实现产品的UI显示。它支持基本的UI设计和部分动画效果,以及电容屏的良好交互效果。 ● emWin免费的嵌入式GUI适配,完整的UI
发表于 2018-09-12
ZLG致远电子推出一系列低成本多媒体解决方案

提高CAN总线安全保障—CANDT震撼发布!

CAN总线已经成为新能源汽车、军工、航空等行业的主控系统应用总线,但随着节点增加,CAN网络的不稳定性对设备运行带来极大安全隐患。ZLG致远电子专注于构建CAN总线安全保障体系,震撼发布CANDT一致性测试系统!    CAN一致性测试,就是要求整车CAN网络中的节点都满足CAN总线节点规范要求,缩小CAN网络中节点差异,保证CAN网络的环境稳定,有效提高CAN网络的抗干扰能力。 为什么要进行CAN一致性测试? 一、整车CAN网络架构    随着新能源汽车行业发展,整车CAN网络中的节点演变得极为复杂,现在新能源汽车内部CAN节点已经高达60个,网络
发表于 2018-08-27
提高CAN总线安全保障—CANDT震撼发布!

致远电子数据采集记录仪,保证温度测量的准确性

使用热电偶测量温度最常见的测温方法,但是由于热电偶冷端温度不为0℃,直接测量往往会造成较大误差。致远电子数据采集记录仪可以进行热电偶冷端温度补偿,保证温度测量的准确性!一、热电偶为什么要进行冷端补偿热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。 理论上,热电偶是冷端以0℃为标准进行测量的。然而,通常测量时仪表是处于室温之下的,由于冷端不为0℃,造成了热电势差减小,使测量不准,出现误差。为减少这类测试误差,在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。 二、冷端补偿原理热电偶的冷端补偿通常采用在冷端
发表于 2018-08-01
致远电子数据采集记录仪,保证温度测量的准确性

怎样才能设计出稳定可靠电源

一、电压应力电源电压应力是保证电源可靠性的一个重要指标。在电源中有许多器件都有规定最大耐压值,比如:场效应管的Vds和Vgs、二极管的反向耐压、IC的最大VCC电压以及输入输出电容的最大耐压。所以我们设计时必须要考虑到器件要承受的最大电压。再根据电压选择适当器件,最后再进行实际测试加以验证。但在测试时我们必须测试电源所有工作状态的电压应力,以确保在最恶劣的工作状态下也能留出约10%的安全裕量。ZLG输入冲击电压会做到最大的预留量,以应对各类工业现场所出现的情况,如下图1所示。 图1 ZLG电源产品极限特性表二、电流应力电源电流应力往往与热应力密切相关,比如二极管SK54最大平均电流为5A,但是它是在满足热应力降额前
发表于 2018-06-07
怎样才能设计出稳定可靠电源

面向AWorks框架时间管理程序设计

一小时,若tm_isdst为0或负数,表示不使用夏令时。现在一般不使用夏令时,tm_isdst设置为-1即可。夏令时(Daylight Saving Time:DST)是一种为节约能源而人为规定地方时间的制度,在这一制度实行期间所采用的统一时间称为“夏令时间”。一般在天亮早的夏季人为将时间提前一小时,可以使人早起早睡,从而节约照明用电。各个采纳夏时制的国家具体规定不同。目前全世界有近110个国家每年要实行夏令时。我国在1986年至1991年实行了六年的夏令时,每年从4月中旬的第一个星期日2时整(北京时间)到9月中旬第一个星期日的凌晨2时整(北京夏令时)。在夏令时实施期间将时间调快一小时。1992年4月5日后不再实行。例如,当前时间
发表于 2018-05-30
面向AWorks框架时间管理程序设计

小广播

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 市场动态 半导体生产 材料技术 封装测试 工艺设备 光伏产业 平板显示 电子设计 电子制造 视频教程

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2018 EEWORLD.com.cn, Inc. All rights reserved