基于UCC3895与PIC单片机的智能充电器的设计

2011-08-27 18:19:37来源: 互联网

     采用新一代移相PWM控制芯片UCC3895和PICl6F917单片机,针对常用的铅酸蓄电池设计开发了一种智能充电器,介绍了其硬件设计思路和软件实现方法,并提出了智能控制策略。
关键词:UCC3895;PIC;智能充电器


0 引言
    现代通讯设备、电子产品、电动车辆、UPS等普遍采用蓄电池作为电源,然而多数充电设备功能单一,通用性差,维护质量低,导致产品的使用效率大大降低。本文采用UCC3895和PIC单片机,针对常用的铅酸蓄电池,设计开发了一种智能充电器。
    UCC3895是TI公司生产的专用于PWM移相全桥DC/DC变换的新型控制芯片,可工作于电压模式,也可工作于电流模式,并且可实现输出脉冲占空比从0到100%相移控制,软启动和软停止可按要求进行调节;内置7MHz带宽的误差比较放大器;具有完善的限流及过流保护、电源欠压保护,基准欠压保护、软启动和软停止等功能。
    PICl6F917型单片机与UCC3895共同组成控制器部分,相对于仅使用单片机作为控制器的方式,具有响应速度快,控制精度高,软件设计简单,运行稳定等优点。


l 总体结构
    如图l,充电器的供电部分采用开关电源,其输入为220V交流市电,整流滤波后,一部分为控制电路的数字器件提供辅助工作电源和参考电压,另一部分经全桥逆变转换为高频交流电,再进行高频整流滤波,为蓄电池提供0~60V脉冲直流电。PIC与UCC3895配合构成闭环控制电路,通过比较用户设定值和采样得到的反馈值,在充电过程中的不同阶段对逆变器进行PWM控制,同时PIC完成显示和报警等功能。

2 硬件设计
    1)主电路设计
    如图2,充电主电路采用移相控制全桥ZVT—PWM变换技术,利用功率MOS管的输出电容和输出变压器的漏电感作为谐振元件,使FB—PWM变换器四个开关管依次在零电压下导通,实现恒频软开关,减少了开关损耗,可保证变压器效率达80—90%,并且不会发生开关应力过大的问题。

    2)控制电路设计
    控制电路分为两部分。第一部分为前级控制器,由UCC3895及其外围电路组成,用来生成PWM脉冲,实现对开关管的控制。第二部分为后级控制器,由PIC和TLV5618及其外围电路组成,实现用户设定、采样、显示、计时、报警、主电路通断等充电过程的管理功能。

(1)前级控制电路
    引脚电路功能分析
    如图3,脚1和脚20是误差放大器的反相输入端和同相输入端,其中脚20外接Uc,Uc是后级控制器送来的输出电压控制信号,经隔离后,在这里作为误差放大器的基准电压。脚2为误差放大器的输出端,内接PWM比较器的非反相端,外接EA与l脚。当充电开始时,充电电流较大,取样电流与设定电流比较后接在PWM的非反相端,从而调节PWM输出脉冲宽度;当充电末了,充电电流较小,充电电压变大,2脚依靠误差放大器反馈控制调节PWM输出脉冲宽度。


 

    脚3为PWM比较器的反相输入端,外接7脚和取样电流电路。充电初始阶段,充电电流较大,电路工作在峰值电流模式下,反馈信号主要由取样电流提供,它与同相端比较后,调节PWM输出脉冲宽度。充电中后期,充电电流变小,充电电压稳定,电路工作在电压模式下,该端接CT(引脚7)上的锯齿波信号。
    工作过程原理分析
    充电器电压信号由传感器取出,加到UCC3895的1脚。充电初期,电池两端电压很低,充电电流很大,电路工作在峰值电流模式下,电压反馈对控制电路影响比较小,这时电路主要靠电流反馈工作,采样电流VI经过比较后加到PWM比较器的非反相端,IA、IB经过整流后加到PWM比较器的反相输入端,由两者的大小调节PWM比较器输出脉冲的宽度(如图4);充电中后期,电压变大,充电电流变小,电路工作在电压模式下,电压信号加到误差放大器的反相端与设定的基准值比较后送至PWM比较器的非反相端,7脚输出的锯齿波信号接在PWM比较器的反相端,由两者的大小调节PWM比较器输出脉冲的宽度(如图5)。由芯片外围电路可以看出,它具有两个闭环控制调整电路,其一是电压控制闭环电路,电压取样信号加在误差放大器反相端,与后级控制器送来的同相端基准电压比较,产生误差信号,加在PWM比较器反相端。其二是电流控制闭环电路,输出电流取样信号与后级控制器送来的电流信号比较后加在PWM比较器非反相端,它与反相端信号比较后产生控制信号,从而决定输出脉冲的宽度。

   (2)后级控制电路
    参数设定与显示部分
    如图6,PIC的RD0~RD5设为输入,外接6个按键,分别为4个方向键、确定键、取消键,用于接收用户的参数设定值,如电池标定电压、充电电流、充电时间,单片机将这些设定值存储于EEPROM中。RC0~RC7设为输出,外接显示屏的数据端,用于显示当前的工作状态和用户设定确认。

采样部分
    由于PIC的RA0~RA2可同时作A/D通道,用来接收采样的电池电压、充电电流、电池温度,将其转换为十位二进制数存储。其中充电电流通过一个外接检测电阻,转换为电压值线性计算得到,电池温度通过温度传感器TC1047得到。
    控制输出与报警部分
    TLV5618与单片机相连,串行接收RB0送来的代表用户设定值的数字信号,完成DA转换,将得到的模拟量通过OUTA(控制电压VKV)和OUTB(控制电流VKI)输出,为UCC3895提供基准电压和基准电流。RB3、RB4设为输出,用于控制主电路通断(SWITCH)和驱动报警设备(BUZZ)。RB5设为输入,接收报警信号(ALART)。


3 软件设计
    根据铅酸蓄电池的充电特性,为提高充电效率,延长电池寿命,实现快速充电,本文采用三阶段智能识别充电法。如表l所示,以12V铅酸蓄电池为例,在不同温度下各充电阶段选择不同的转换电压,转换电流和浮充电压。
    1)主程序
    充电主程序主要完成各功能部分的初始化、循环采样、显示输出实时状态、判断充电阶段、充电计时、故障报警等工作,其流程图如图7所示。

    2)恒流充电阶段

图8为恒流充电阶段的流程图。单片机按照设定充电电流值控制UCC3895使主电路输出恒定电流,根据当前温度以查表的方式取得恒流到恒压阶段的转换电压,采样电池电压,当电池电压超过转换电压时,该阶段结束,进入恒压充电阶段;若未超过,继续采样。过程中同时判断是否有过流(此时ALART=1)或到达设定充电时间,以确定是否停止充电。

 

    3)恒压充电阶段
    图9为恒压充电阶段的流程图。单片机按照当前电池电压值控制UCC3895使主电路输出恒定电压,采样电流,若电流小于浮充阶段转换值,该阶段结束,进入浮充阶段;若不小于,继续采样。过程中同时判断是否有过压(此时ALART=1)或到达设定充电时间,以确定是否停止充电。

    4)浮充阶段
    该阶段蓄电池已充满,为了补充蓄电池自放电的能量损失,单片机按照表l浮充电压值控制UCC3895使主电路输出恒定电压,给蓄电池一微小的充电电流,同时判断蓄电池的充电电压和电流,以便在恒压充电和恒流充电阶段间转换,判断充电时间,若充电时间到,断开主电路(SWITCH=0,停止充电。流程图与恒压阶段类似。


4 结束语
    以UCC3895和PIC单片机为控制器设计的智能充电器,可对常用的12V~48V铅酸蓄电池进行充电,能够保证电池的充足率,并且保证不会过充。整个充电器体积小,结构简单,成本低,具有良好的充电管理和维护功能,而且有利于延长电池的使用寿命,具有非常高的实用价值和推广价值。

关键字:单片机  智能  设计

编辑:eeleader 引用地址:http://www.eeworld.com.cn/gykz/2011/0827/article_8347.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
单片机
智能
设计

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved