一种高效新型WCDMA直放站PA方案的设计与实现

2011-07-17 16:25:52来源: 互联网
  随着3G技术的发展,系统容量的不断提高,对系统的线性要求越来越高。功放作为通信系统的主要非线性单元,其性能的改善在整个系统中的作用至关重要。单纯采用用功率回退的方法去满足线性要求越来越困难,同时也难以满足日益提高的效率要求。因而使得很多线性化技术被不断应用到功放设计中。

  目前已商用的线性化技术包括前馈、DPD和模拟预失真。其中前馈技术主要的缺点是,误差环路不能同时放大有用信号,导致效率非常低;而DPD技术主要的特点是,通过处理基带信号达到预失真的效果,因此需要将射频信号先转化成基带信号,处理完成后再还原成射频信号与PA的输出信号进行合成,完成信号的校正,其最大的缺点是系统复杂、难以调试,有效带宽受限。与以上两种线性化手段相比较,模拟预失真系统结构简单,容易调试,效率也可满足需求,因此已成为现在比较受欢迎的线性化方法。

  不过,模拟预失真最重要的就是选择合适的非线性器件,其特性要和LDMOS非常接近,才能模拟出PA的非线性特性,最终达到预失真的效果。而这样的器件选择需要大量的实验数据和验证,这给前期研发带来很大挑战。

  本文采用Scintera公司内部集成的新型预失真芯片SC1887,配合NXP公司的BLF6G22LS-130,使用Doherty结构,前级推动使用BLM6G22-30G,最终完成WCDMA 30W功率输出,为直放站客户提供了一种针对20W整机的高效、节能的解决方案。

  SC1887预失真电路构成

  与传统的模拟预失真电路相比较,SC1887大幅简化了预失真电路的结构,减少了外围元器件的应用,从而使得整个电路更加紧凑、更易小型化;同时进一步提升了系统可靠性。实现原理如图1所示。

SC1887预失真实现框图
 

图1 SC1887预失真实现框图

  该电路采用了闭环结构,对消效果比传统的开环结构更优异。该芯片通过调节RFin、RFout和FFFB三个端口与各个巴伦之间的匹配,可以在600MHz到2.8GHz的带宽内正常工作。本方案采用村田制作所(Murata)的高Q电容和低差损电感,将三个端口回波控制在18dB以上(该板是采用Isola公司的专用板材IS680设计的四层板)。同时可通过SPI和计算机相连,随时监控其工作状态,使调试更加简捷高效。

  具体实现方案

  DXY鼎芯实验室采用NXP公司的高性能LDMOS,独立设计出一种实用的Doherty结构,与模拟预失真芯片SC1887实现了完美结合。射频方案中的预推动采用NXP RFSS BGA6589,推动级采用NXP BLM6G22-30G,末级采用NXP BLF6G22LS-130。相比于业内其他厂家的产品,NXP的LDMOS效率高、增益高,在高效率、大功率功放应用方面有着不可替代的优势。

  其中BLF6G22LS-130单管增益可达17dB,饱和效率55%,做成Doherty后增益也有15-16dB,末级6dB回退效率在40%以上。BLM6G22-30G是塑封的集成二级IC管,增益高达28dB,效率高,是做大功率推动级的首选方案。同时为了提高输出功率,采用研通(Yantel)高频技术公司最新推出的低插损电桥HC2100A03。

 SC1887对RFin、RFFB两个端口的输入信号强度都有一定动态范围要求。为了与功放更好的配合,在环路内使用两个ATT电路,实时调节主通路和反馈通路的增益范围,确保SC1887在一定的功率输出动态范围内有很好的表现。具体实现电路原理如图2所示。

功放原理框图
 

图2 功放原理框图

  测试结果分析

  测试结果如表1所示。从测试数据可以看出,在Pout=44.7dBm时,对消后ACPR在52dBC以上,可以满足3GPP频谱发射模板。效率可以做到27%,比普通回退功放提高10%以上,显着减少了能耗,远远超出运营商的招标要求,符合当今节能环保、绿色低碳的发展需求。

表1 WCDMA单载波测试结果

WCDMA单载波测试结果
 

  通过分析以上测试结果可以看出,该方案有如下几大优势:

  1.效率高:采用Doherty加模拟预失真的线性化技术,该方案与普通的HPA相比,效率至少提高10%以上。

  2.成本低:功放管在整个功放成本中占主要地位,同样的功率输出,该方案比传统的HPA减少一半的使用量,节省成本。

  3.结构简单,易于调试:简化了预失真电路的结构,减少了外围元器件的应用,使得整个电路更加紧凑,提高了整个系统的可靠性和一致性,便于生产调试。


 

图3 2140MHZ 测试结果


 

图4 WCDMA30W PA方案测试平台

  附录:功放的非线性失真及传统模拟预失真的实现

  功放的非线性失真特性主要由AM-AM失真、AM-PM失真两个特性来表征,如图5所示。

功放的AM-AM、AM-PM特性示意图
 

图5 功放的AM-AM、AM-PM特性示意图

  为了便于分析,我们忽略功放的记忆效应,将功放的传输特性标识为:


 

  其中Vi(t)、Vo(t)分别为功放的输入和输出电压。将该式用泰勒级数展开,取前3项,得到式(2):


 

  为简化分析过程,我们假设输入为点频信号,即Vi=Acosω1t,则输出信号为:


 

  从式3可以看出,由于功放的非线性,输出信号中不仅包含有输入信号频率分量,还出现了新的直流分量、二次谐波和三次谐波分量。其中,基波分量的振幅为其中k1为线性增益,是非线性失真。

  当k3>0时,>K1,此时增益呈现扩张特性;反之,当k3< 0时,0的增益扩张特性,传统的预失真器就是要找到这样的器件来完成预失真效果。

  AM-PM失真是指输出信号的相位随输入信号幅度的变化而变化。对于一个理想的放大器,它的输出信号的相位和输入信号的幅度无关。然而,在实际的放大器中,输入信号的幅度调制会导致输出信号的相位调制,一般用贝塞尔函数表示,如下:



 

  实际表明,当输入信号为小功率信号时,功放的非线性主要以AM-AM失真为主;而当输入信号为大功率信号时,AM-PM失真较之前者对功放线性的影响更为明显。

  功放的非线性主要是由k3<0产生增益压缩而产生的。模拟预失真的原理就是要找到一个k3>0的器件与功放串联,使两者的非线性相互抵消,使最终功放输出的信号保证在线性状态下。其原理如图6所示。

预失真原理框图
 

图6 预失真原理框图

  为了保证足够的对消效果,一般预失真都采用双环结构,其实现框图如图7所示。

模拟预失真实现框图
 

图7 模拟预失真实现框图

  其中通路III、IV构成预失真产生环路,合路后经通路V通过必要的衰减和移相再与通路I的主信号合成最终完成预失真的效果。一般通路IV上的IM3产生器的器件选择都比较严格。

  整个电路需要IV、V两个通路同时严格的调整衰减和相位,结构比较复杂,调试难度也很高。

关键字:高效  新型  wcdma  直放站

编辑:eeleader 引用地址:http://www.eeworld.com.cn/gykz/2011/0717/article_7219.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
高效
新型
wcdma
直放站

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved