一种基于数字水印的无线传感器网络敏感数据通信协议

2011-05-17 14:55:20来源: 互联网 关键字:无线  传感器网络  网络
无线传感器网络具有节点成本低、电源消耗小、网络自组织等优点,已广泛地应用于很多领域[1]。
    无线传感器网络在很多应用中,存在着在节点间传输敏感信息的需求。敏感数据是指密钥、ID、军事领域中的关键数据、节点的身份验证信息等涉及系统安全、稳定运行的一类关键数据。这类数据通常要求采用一种比常规通信方式更安全、可靠的方式传递。敏感数据的传输有很多种方法,比较常见的是基于加密技术来实现。但由于传感器节点资源有限,复杂的算法无法在节点中实现[2],这些算法在资源耗费方面、加密强度方面尚不完美。
 本文基于数字水印的原理来实现敏感数据的传输,通过信息隐藏来实现敏感数据的传输。与加密传输相比,该算法具备简单高效、不易察觉等优点,适合于在无线传感器网络中实现。
 数字水印(digital watermarking)技术是实现信息隐藏的一种主要手段。敏感信息可以毫无察觉地嵌入到数据中,嵌入的信息就叫做水印[3]。数字水印是信息隐藏学的一个分支,是利用人类感觉器官的不敏感及多媒体数据中存在的冗余,将秘密信息隐藏到宿主信息中,水印的添加不会影响原数据的正常使用[4-7]。
 基于以上原理,本文提出一种基于数字水印技术和信息隐藏的敏感信息通信协议。
 目前绝大多数传感器节点都支持16位的寄存器,传感数据在通信时也是基于16位无符号数整数传输的。而16位无符号整数的取值范围是0~65 535。当实际采集的传感数据值比较大时,改变最低位对传感器数据值的影响很小,可以忽略不计。
 因此,本文通过16位无符号整数的最低位来传输敏感数据,并利用数字水印嵌入算法将敏感数据嵌入其中,达到敏感数据隐蔽传输的目的。为避免最低位的改变对传感数据的精度造成太大影响,本文设置了一个阀值,只有大于该值的数据才会被嵌入敏感信息。

1 敏感数据嵌入及提取过程
 嵌入敏感信息的方法与数字水印的嵌入方法基本相同。如图1所示,首先将敏感信息转化为一个二进制流,命名为输入二进制流;将传感数据转化为一个16位无符号整数流,命名为输入整数流;将输出的含有敏感数据的无符号整数流命名为输出整数流。则敏感数据嵌入过程描述如下:如果输入整数流当前位置的传感数据值大于或等于阀值,且输入二进制流中当前位置的二进制值为“1”,则将整数流当前位置的数据最低位置“1”,并添加到输出整数流中,否则置“0”;如果输入整数流当前位置的传感数据值小于阀值,则不添加水印,直接将该数添加到输出整数流中。


    敏感数据的嵌入算法描述如下:
    #define N  0x0100;                        //阀值
    typedef BitStream TInputBitStream;    //定义输入二进制流
    typedef Uint16Stream TInputUintStream; //定义输入无符号整数流
    typedef Uint16Stream TOutputUintStream;//定义输出无符号整数流
    //---------------------------------------
    /** 用敏感数据初始化输入二进制流 **/
    TInputBitStream * TheIBS=
  new TInputBitStream(SensitiveData aData);
    /** 用传感数据初始化输入无符号整数流**/
    TInputUintStream * TheIUS=
  new TInputUintStream(SensorData aData);
    /** 用空数据初始化输出无符号整数流 **/
    TOutputUintStream * TheOUS=new TOutputUintStream();
    //------------------------------------
    /**  数字水印嵌入方法
    ** 注意:本方法假定输入整数流的长度
    *足以嵌入所有的敏感数据
    * 参数TheIBS: 输入二进制流
    * 参数TheIUS:输入无符号整数流
    * 参数N:预先定义的阀值
    * 返回值:输出无符号整数流TheOUS  **/
    TOutputUintStream* InsertWaterMarking(TheIBS,TheIUS,N)
    {
      uint16_t  TheUintIndex=0; //用于保存输入整数流的位号
      uint16_t  TheBitIndex=0; //用于保存输入二进制流的位号
      uint16_t  CurrentUintData; //用于保存当前的无符号整数值
      bit_t  CurrentBitData;     //用于保存当前的二进制值
      while(TheBitIndex    {
      CurrentUintData=TheIUS.Read(TheUintIndex,1);
      CurrentBitData=TheIBS.Read(TheBitIndex,1);
    /**若当前无符号整数值小于阀值,则读取下一个值,
    *直到大于阀值时,停止循环   **/

  while(CurrentUintData   {
       TheOUS.Write(CurrentUintData);//将当前值加入输出流
       TheUintIndex++;
       CurrentUintData=TheIUS.Read(TheUintIndex,1);
       }
    /** 如果当前二进制值为1,则将当前无符号整数值的最后一位置为“1”,并将该值加入到输出流中;否则,将最后一位置为“0”,并将该值加入到输出流中。 **/
  if(CurrentBitData==1)
   TheOUS.Write(CurrentUintData|0x0001);
    else TheOUS.Write(CurrentUintData&0xfff0);
    TheBitIndex++;
    TheUintIndex++;
  }
}
    敏感数据的提取过程与嵌入过程相反,将接收到的含有敏感数据的16位无符号整数流命名为输入整数流,将提取出的二进制敏感数据流命名为输出二进制流,将输出的16位传感数据流命名为输出整数流。则敏感数据提取过程描述如下:首先将该值添加到输出无符号整数流中,然后检测输入整数流中当前位置的数据值,如果该值大于或等于阀值且最低位为“1”,则将“1”添加到二进制输出流中;否则,将“0”添加到二进制输出流中;如果该值小于阀值,则不往二进制输出流添加数据。最后,将输出二进制流转化为敏感数据,将输出无符号整数流转化为传感数据。
    为进一步提升敏感数据传输的安全级别,还可以在预处理时对敏感数据加校验、加签名、加密等。
2 实际验证
  无线传感器网络在某军事化应用中,多个节点被布设于一个生疏地域内,实时采集该地域的温度、湿度、光照等环境信息。为检测各个节点未被敌方捕获而传回虚假信息,各节点将不定时地传回自己的“识别码”,以证明自己的身份。“识别码”由节点ID、当前时间、基站回复码等信息实时运算生成,为一串数字。
    在该应用中,采用了本文所述方法传输“识别码”。具体做法是:在“光照”传感数据中,当数据值大于256(0x0100)时,嵌入“识别码”。如图2所示,“光照”数据的值通常白天在600以上,均大于阀值,方便嵌入水印,同时,嵌入水印后,对原值影响较小。

 嵌入“识别码”前后数据对照如表1所示。表中左列为未嵌入“识别码”时的“光照”数据,中间列为嵌入“识别码”后的“光照”数据,右列是“识别码”的二进制形式。中间列标有*的数字为嵌入“识别码”后发生变化的数据。


3 结果分析
3.1 水印嵌入对传感数据的影响

    采用以上嵌入算法后,对传感数据的影响可分为以下三类:
 (1)传感数据的值大于等于阀值,且其最低位在嵌入水印时发生了变化,即原始数据的最低位由“0”变为“1”或由“1”变为“0”。这时,传感数据的值在嵌入水印后发生了变化,变化前后传感数据相差为“1”。其相对变化率如下:
 

 可见,其相对变化率小于1/N,当N=0x0100,即十进制数256时,其相对变化率小于0.39%
 (2)传感数据的值大于等于阀值,但其最低位在嵌入水印时未发生变化,其值不受影响。
 (3)传感数据的值小于阀值。传感数据的值小于阀值时,不嵌入水印,因此,其值不受影响。
3.2 N值大小对协议的影响
 当N值较大时,水印嵌入对原始传感数据的影响较小(相对变化率较小),但满足条件的传感数据则会变少,传输敏感数据的周期会变长;当N值较小时,水印嵌入对原始数据的影响较大(相对变化率较大),但满足条件的传感数据多,敏感数据传输周期较短。因此,在实际应用中应根据数据的实际取值范围合理地选取N值。
 本文所提出的基于数字水印原则无线传感器网络敏感数据通信协议,具备以下特点:
 (1)可实现敏感数据的隐蔽传输。由于水印嵌入算法仅改变了传感数据的最低位,数据变化微小。在不知道原始数据的情况下,很难发现数据中嵌入了水印。达到了敏感数据隐蔽传输的目的;
 (2)对原始数据影响小。采用本协议后,仅大于阀值且最低位与水印当前位不一致的值会发生变化,变化结果为值加“1”或减“1”,相对变化率最大为1/N。当选取合适N值后,相对变化率可以控制在1%以下,基本上不会影响传感数据的后续应用;
 (3)算法简单,易于实现。
 因此,该协议能很好地应用于无线传感器网络需要传输敏感信息的场合中。

关键字:无线  传感器网络  网络

编辑:eeleader 引用地址:http://www.eeworld.com.cn/gykz/2011/0517/article_6005.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:基于无线传感器网络的节水灌溉控制系统
下一篇:基于Windows CE的便携式数据采集与处理系统

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利
推荐阅读
全部
无线
传感器网络
网络

小广播

独家专题更多

迎接创新的黄金时代 无创想,不奇迹
迎接创新的黄金时代 无创想,不奇迹
​TE工程师帮助将不可能变成可能,通过技术突破,使世界更加清洁、安全和美好。
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2017 EEWORLD.com.cn, Inc. All rights reserved