一种基于神经网络感知器的双足行走机器人

2010-08-11 12:10:52来源: 自动化技术与应用

1引言

        人作为双足行走生物,是在长期的生物进化过程中形成的。人能够不自觉地保持身体的直立性和平衡性,不论是在静止不动还是在行走过程中。一旦失去平衡,人就会产生相应的动作,使身体保持平衡。例如,在静止时,当人的重心偏向一侧时,就会不自觉地向该侧跨出一脚,以使重心位置落于支撑面内。这里,支撑面定义为两脚之间的面积以及两脚的面积。当重心落于支撑面内时,就不会倾倒。再如,在行走过程中,人的重心不断向前移动,超出了两脚尖的位置,迫使人向前迈出脚,这样才使人的行走成为可能,使人的行走自然流畅。因此,控制机器人重心的位置及重心位置的速度,是机器人保持稳定及产生有效步态的关键。本文就是控制机器人的重心位置,使其落于支撑面内,从而达到了机器人稳定性控制的目的。机器人的重心可以由安装在机器人脚底的力传感器测知。当重心偏向一侧,这一侧的传感器输出偏大,相反的一侧的力传感器等于零,或趋近于零。本文用感知器来感知机器人重心位置的变化,当重心超出支撑面时,系统将发出动作指令,使机器人保持稳定。

        本文采用的神经网络感知器(Perception)是最简单的人工神经网络,它是F??Rosenblatt于1958年提出的具有自学习能力的感知器。在这种人工神经网络中,记忆的信息存储在连接权上,外部刺激通过连接通道自动激活相应的神经元,以达到自动识别的目的。感知器模型如图1所示,通常由感知层S(Sensory)、连接层A(Association)和反应层构成R(Response)。

2 人工神经元感知器的学习算法

      可以用下面的方法训练网络:

(1)初始化S层至连接层(A层)的连接权矩阵

中的各个元素及A层各单元的阀值赋予[-1,+1]之间的随机值,一般情况下vij=1θj=0i=1,2,Λ,pj=1,2,Λ,n且在整个学习过程中保持固定不变。
A层至输出层(R层)的连接权矩阵

中的各个元素及??S层各单元的阀值θ=[θ1θ2Λθq]赋予[-1,+1]之间的随机值。
(2)训练随机选取一输入、输出模式对(Sk,Yk),这里k=1,2,Λ,m时,网络进行以下步骤的训练。

第一步,计算连接层各单元的输出

第二步,以连接层的输出作为输入层的各单元的输入计算输出层的实际输出

        在学习过程中,当所有的m个样本模式对都提供给网络学习一遍后,还需从头再继续提供给网络学习。直到达到最大学习次数,以防止发散或无限震荡,或者满足误差限。

3 计算机控制系统

        机器人重心位置是由脚底的力传感器测定的。当某一侧的传感器输出值趋于零或小于预定的值时,说明重心已经偏向相反的另一侧,机器人处于危险状态。这时机器人就应该产生一定的动作,向另一侧跨出一脚,以使机器人的重心位于支撑面内。整个控制系统如图2所示

 

        其中,y(t)是传感器输出向量,为模拟量,经采样、A/D转换后为人工神经网络感知器的输入向量y(kt)。

        本文取感知器的输入层单元与输出层单元的个数相同。感知器经过训练好以后,系统将时实监控机器人的重心位置,当重心偏向某侧,相反侧的力传感器的输入小于设定的安全值时,神经网络相应于该侧的输出为1,其余均为0,系统将根据神经网络的输出,做出相应的动作指令;当传感器的输入均大于设定安全值时,神经网络的输出均为0,系统不产生任何动作指令。

4 仿真

        本文假设在机器人的脚底安装有力传感器,左脚的后部、左部和前部各一个,右脚的前部、右部和后部各一个。依次编号为pi,i=1,2,Λ 6,构成输入向量

P=[p1,p2,p3,p4,p5,p6]T

    假设机器人的重是100??kgf,当机器人的脚底的传感器输出为2kgf,即认为机器人处于危险状态。设神经网络感知器的输入为

        对应的理想输出为

        即认为力传感器的输出为2kgf时机器人处于危险状态,传感器的输出为3kgf时,认为机器人处于安全状态。连接权值和阀值的初始值分别是

        经过n=1335次迭贷,输出达到期望值。连接权值和阀值分别为

5 结论

        本文就双足行走机器人的稳定性控制提出了一种新的控制方法,它是建立在人工神经网络感知器上。试验表明,该方法简单易行。

关键字:神经网络  感知器  双足行走机器人  稳定性控制

编辑:金海 引用地址:http://www.eeworld.com.cn/gykz/2010/0811/article_3256.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
神经网络
感知器
双足行走机器人
稳定性控制

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved