冗余度TT-VGT机器人的神经网络自适应控制

2010-07-26 17:19:48来源: 电子技术应用

    TT-VGT(Tetrahedron-Tetrahedron-Variable Geometry Truss)机器人是由多个四面体组成的变几何桁架机器人,图1所示为由N个四面体单元组成的冗余度TT-VGT机器人操作手,平面ABC为机器人的基础平台,基本单元中各杆之间由较铰连接,通过可伸缩构件li(i=1,2,…,n)的长度变化改变机构的构形。图2所示为其中的两个单元的TT-VGT机构,设平面ABC和平面BCD的夹角用中间变量qi(i=1,2,…,n)表示,qi与li(I=1,2,…,n)的关系如下[2]:

式中,d表示TT-VGT中不可伸缩构件的长度,

li表示机器人可伸缩构件的长度。

    TT-VGT机器人关节驱动力F与力矩τ的关系为:

F=Bττ     (2)

式中,Bτ为对角矩阵,对角元素Bτi为:

1 状态模型

    机器人的自适应控制是与机器人的动力学密切相关的。机器人的动力学方程的一般形式可如下表示(不考虑外力的作用):

τ=D(q)q+C(q,q)q+G(q)q    (4)

式中,D(q)∈R n×n为广义质量矩阵(惯性矩阵),

C(q,q)∈Rn×(n×n)为向心力及哥氏力作用的矩阵,

G(q)∈R n为重力矩阵,

τ∈R n表示机器人的驱动力矩。

    对于TT-VGT机器人,用杆件变量li,ii,Li(i=1,2…,n)代替中间变量qi,qi,qi(i=1,2…,n)(见式(1)),则试(4)可表示为:

F=D(l)l+C(l,i)i+G(l)l    (5)

式中,F∈Rn表示机器人的驱动力。

    可把式(5)表示为下列状态方程:

x=A(x,t)x+B(x,t)F   (7)

式中,

    上述机器人动力学模型就是机器人自适应控制器的调节对象。

    考虑到传动装置的动力学控制系统模型如下式所示:

式中,u、l——传动装置的输入电压和位移矢量,

Ma、Ja、Ba——传动装置的驱动力矩比例系数、转动惯量和阻尼系数(对角矩阵)。

    联立求解式(5)和式(9),并定义:

    可求得机器人传动系统的时变非线性状态模型如下:

2 Lyapunov模式参考自适应控制器设计

    定理 设系统的运动方程为:

e=Ae+Bφr    (13)

φ=-RB T Per     (14)

式中,e为n维向量,r为l维向量,A、B、φ分别为(n×n)、(n×m)、(m×l)维满秩矩阵,R与P分别为(m×m)、(n×n)维正定对称矩阵。

    假若矩阵P满足Lyapunov方程:

PA+A TP=-Q    (15)

式中,Q为(n×n)维正定对称矩阵。

    同该系统的平衡点e,φ是稳定的。

    如果向量r又是由l个或更多不同频率的分量所组成,那么该平衡点还是渐近稳定的。其证明可参看文献[4]。选择如下的稳定的线性定常系统为参考模型:

y=Amx+Bmr    (16)

    式中,y——参考模型状态矢量:

式中,∧1——含有ωi项的(n×n)对角矩阵,

∧2——含有2ξωi项的n×n对角矩阵。

    式(18)表示n个含有指定参数ξ和ωi的去耦二除微分方程式:

yi+2ξiωiyi+ωi2yi=ωi2r    (19)

    令控制器输入为:u=Kxx+Kur     (20)

式中,Kx、Ku——可调反馈矩阵和前馈矩阵。

    根据式(20)可得式(11)的闭环系统状态模型为:

x=As(x,t)x+Bs(x,t)u    (21)

式中,As(x,t)=Ap(x,t)+Bp(x,t)Kx,Bs(x,t)=Bp(x,t)Ku    (22)

    将式(12)代入式(22),可得:

    适当地设计Kxi、Ku,能够使式(11)所示系统与式(16)所代表的参考模型完全匹配。

    定义状态误差矢量为:

e=y-x    (24)

则e=Ame+(Am-As)x+(Bm-Bs)r    (25)

    控制目标是为Kx和Ku找出一种调整算法,使得状态误差趋近于零,即:

    对脚式(13)与式(14),选取正定Lyapunov函数V为:

式中,P——正定矩阵,

FA和FB——正定自适应增益矩阵。

    对上式微分,得

    根据Lyapunov稳定性理论,保证满足式(24)为稳定的充要条件是V为负定,由此可求得:

    将式(22)求导并与式(30)联立求解,同时考虑到控制器稳定时式(11)所示系统与式(16)所代表的参考模型完全匹配,可得

    由此已得到控制器的自适应控制律。

3 TT-VGT机器人的神经网络自适应控制

    本文采用直接MRAC(模型参考自适应控制神经网络控制器对TT-VGT机器人进行控制。在图3中,NNC(神经网络控制器)力图维持机器人输出与参考模型输出之差e(t)=l(t)-lm(t) →。即通过误差反传,并采用上节的自适应算法,调节NNC,使得其输出控制机器人运动到误差e(t)为0。

    神经网络模型如图4所示。

4 实例分析

    以四得四面体为例,如图5所示建立基础坐标系,末端参考点H位于末端平台EFG的中点。设参考点H在基础坐标系中,从点(0.8640,-0.6265,0.5005)直线运动到点(1.8725,0.5078,0.7981),只实现空间的位置,不实现姿态。运动的整个时间T设定5秒,运动轨迹分为等时间间隔的100个区间。不失一般性要求,末端在轨迹的前40个区间匀加速度运动(a=0.2578),中间20个工间匀速度运动,最后40个区间匀减速度运动(a=-0.2578),开始和结束时的末端速度为。设各定长构件长度为1m,机构中各杆质量为1kg,并将质量向四面体各顶点对称简化。

    传动装置的参数如下:

Ma=4.0×10e -3kg·m/V;Ba=0.01N·m/(rad·s -1);

    近似认为各关节电动机轴上的总转动惯量在运动过程中保持不变,其值分别为:

J1=0.734kg·m2;J2=0.715kg·m2;

J3=0.537kg·m2;J4=0.338kg·m2

    末端位置误差曲线如图6所示。从误差曲线可看出,用神经网络自适应控制的机器人位置控制精度较高,稳定性较好。

    本文提出采用直接MRAC神经网络自适应器对机器人进行轨迹控制的方案;建立机器人状态模型,推导出自适应控制算法,并对冗余度TT-VGT机器人轨迹控制进行了仿真。结果表明,该方案控制误差较小,稳定性较好。

关键字:冗余度  TT-VGT机器人  神经网络  模型参考自适应控制

编辑:金海 引用地址:http://www.eeworld.com.cn/gykz/2010/0726/article_3200.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
冗余度
TT-VGT机器人
神经网络
模型参考自适应控制

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved