基于ZigBee技术的油田示功参数监控系统

2009-12-03 20:05:04来源: 电子技术

0 引言

    随着全球经济的稳步发展,石油的在人们生产、生活中的应用越来越广,石油的需求量也与日俱增。人们对石油的生产更加关切。目前,油田现场采集、监控一般采用传感器进行数据的采集,然后将信号通过电缆传送到控制中心加以处理。油田现场所处环境偏远恶劣、地势复杂,油井分布广、数量多,铺设固定通信线路成本高、线路长、设备造价高、投资大等特点,制约了油田的生产监控。本文提出将ZigBee技术应用在油田监控中。

1 ZigBee技术简介

    近年来,随着微机电系统(MEMS)、片上系统(SOC)、传感、嵌入式计算、网络和通信等方面的飞速发展,无线传感网络(WSN)以其成本低、组网灵活、受地理环境限制少等优点,在许多领域都展示了广阔的应用前景。ZigBee技术利用全球共用的公共频率2.4GHz,具有非常显著的低成本、低耗电、网络节点多、传输距离远等优势,目前被视为替代有线监控网络最有前景的技术之一。与传统无线技术相比(见表1),ZigBee的特点主要表现以下几个方面:

    (1)低功耗。待机模式,2节AAA干电池可支持1个节点工作0.5~1年。

    (2)低成本。协议大幅简化,免执照频段,免协议专利费。

    (3)低速率。250kb/s(2.4GHz)、40kb/s(915MHz)和20kb/s(868MHz)的原始数据吞吐率。

    (4)近距离。传输范围为10~75m,提高RF发射功率,可增加到1~3km。

    (5)网络容量大。采用St arNet、Me shNet和CluterTreeNet,可组成65000个节点大网。

    (6)短时延。ZigBeen响应速度快,睡眠转入工作状态需15ms,节点连接入网需30ms。

    (7)安全性能高。提供三级安全模式:无安全设定、接入控制清单(ACL)、防止非法获取数据及采用AES-128对称密码。

2 系统总体方案

    加速度传感器、载荷传感器定时收集各井口的示功参数,在ARM处理器控制下,通过ZigBee无线模快,在IEEE802.15.4技术标准的支持下,由ZigBee网络发送到ZigBee路由器和ZigBee协调器,经卫星或GPRS网络将数据发送至控制中心,及时掌握采油现场的工作参数,实现数据的汇总、整理与分析,并及时对终端下达控制命令,调整生产。

    该系统分数据采集终端、Zi gBee无线路由器、ZigBee/WN协调器、控制中心四个部分。油田监测系统架构如图1示。 图一油田监控系统架构

    系统由三级WN组成,结构简单、性能稳定、易于实现。低功耗为该系统突出表现。ZigBee无线网络采用的是2.4GHz频段。该频段为全球统一无需申请的ISM频段。该频段(2.4~2.483GHz)被划为16个信道,数据传输速率250kb/s,码元速率为62.5kbaud,采用16进制正交调制,用码片长度为8的伪随机码直接扩频。GPRS传输速度为56~115Kb/s。与GPRS网络结合使用,可以满足ZigBee网络传输数据的需求,可以减少系统建设初期的投资费用,减轻网络运行维护工作量,使油井示功参数及时、准确地传送至监控中心。系统通过ZigBee和GPRS两种无线网络的连接,实现实时监控,对油田出现的问题及时发现和处理。

3 无线传感器网络建立

    本文充分对比了StarNet、MeshNet和CluterTreeNet各自的优缺点,选用树型无线自组网络(Ad HocNet),采用CSMA-CA方式进行信道存取,各ZigBee传输模块通过多次跳频技术数据传输方式,具有较好的信息隐蔽性、抗多频干扰性和自愈性,并增大网络的覆盖范围。实现对油井示功参数的采集、传输及监控。

    树型无线传感器网络中,自终端设备和网络协调器建立后,终端设备被分配一16位短地址,此后终端就用这地址在无限个域网中通信。主协调器首先启动建立ZigBee个域网,选择ZigBee个域网标识符,自身短地址设为0,然后向其邻近设备发送信标,接受其他网络链接,成为第一级网络。与主协调器建立了连接的设备都分配一16位的网络地址。路由器根据其收到的协调器的信标的信息,配置并发送其自己的信标,允许其他设备与其建立连接,形成从设备--数据采集终端的第二级网络。GPRS网络将数据发送至监控中心,形成三级网络的信息数据链路。

4 硬件设计

4.1 硬件组成及功能

    系统硬件由数据采集传感器、控制器、无线RF收发、存储、电源、GPRS接收、监控中心七个模块组成。传感器模块由载荷传感器、加速度传感器ADX105构成,功能是用来收集油井现场的示功信息;控制器模块为嵌入式系统ARM处理器,功能是进行数据的处理、功耗管理、同步定位、任务管理等操作;无线RF收发模块是由Phipcon公司开发的CC2420RF芯片,功能是与其他RF模块通信,传输油田现场的示功参数和控制信息;存储模块采用Samsung公司生产的NAND型FLASH存储器K9F2808UOC,容量为8~128MB,负责数据存储;电源模块分为两类:一类是高容量锂电池;另一类是变直之后的交流电源(硬件电路如图2所示)。GPRS收发模块A-232/485GPRSDTU负责GPRS通信链路的信息传递,将示功参数送至监控中心;监控中心模块负责数据收集、整理与分析,并反馈控制命令。

4.2 硬件各模块及功能

    ZigBee技术支持两种类型的物理设备:全功能设备(FFD)和精简功能设备(RFD)。油井现场参数采集终端是网络中通信要求最低的部分,结构和功能简单,用电池供电,大多处于睡眠状态,以最大程度地节约电能,数据采集终端的通信模块采用RFD;ZigBee路由器具备数据的存储和收发能力、路由发现能力,从设备的连接、路由表的维护、数据的转发,到维护网络的链路等功能,采用FFD;ZigBee协调器始终处于工作状态,是网络的核心,除完成路由器的功能外,还有制定网络规则,选择合适信道,建立网络并下发地址的功能,采用FFD。

    采集终端(电路框图如图3所示),CC2420通过SPI总线连接到ARM芯片的P1.0~P1.7接口。高容量电池作为终端模块的电源,通过LD0低压差线性稳压器AM11 17-3.3为传感器模块、RF模块、MCU/ARM7提供3.3V左右电压。ARM芯片需3.0~3.6V(3.3V±10%),CC2420需2.0~3.6V。电源功率指示灯显示电源电压。声光报警单元对异常情况报警。晶振电路使ARM7与RF模块同步通信。ZigBee路由器模块框图如图4所示。

    ZigBee协调器硬件电路在MCU右端接A-232/485GPRS/DTU,电源要求4.5~35V。供电电源采用电源线供电(将220V交流电经过整流、稳压、滤波电路转换成5V直流。ZigBee协调器模块框图如图5所示。

    采集终端、路由器和协调器都有FLASH存储器,系统在意外情况下,可海量存储采集到的数据,防止数据丢失。终端和路由器采用锂电池供电,协调器部分采用电源线供电,增强了电源模块的稳定性。

5 软件设计

    软件部分由监控中心、ZigBee协调器通信、ZigBee路由通信、数据采集终端ZigBeeRF模块中的收发模块通信、系统初始化程序(如图6所示)和信息采集终端等程序模块组成。

    监控中心程序负责对整个网络的管理与控制,包括无线传感器节点的MCU、RF收发、数据采集、状态检测、数据处理、以及对连接到节点的设备的控制(主程序如图7所示);ZigBee无线通信模块程序负责数据无线收发,包括RF和基带两部分,前者提供数据通信的空中接口,后者提供链路的物理信道和数据分组;ZigBee路由器及协调器通信程序负责链路管理与控制,执行基带通信协议和相关处理过程,包括建立链接、频率选择、链路类型支持、媒体接入控制、功率模式和安全算法等。采集终端程序及协调器程序分别如图8、9所示。

    软件设计分数据采集、数据信息传递和监控中心三个层次,其运行于数据采集和信息传递之间的程序采用C++Builder6.0或汇编语言实现控制程序语言编写,经过ARM编译系统生成执行程序。监控中心软件由Vi sualBasic6.0开发,数据采用SQLServer数据库存储。IEEE802.15.4/ZigBee开发系统采用无线谷C51RF-3-ZMD2。软件采用结构化设计,便于完善和维护,同时做到界面美观,操作简便。

6 系统低功耗设计

    在ZigBee的网络节点中,只有考虑到MCU的功耗问题,才能真正做到节能降耗,ZigBee低功耗特点才能凸显出来。CC2420在睡眠模式,发射功率只有10mW。发射模式下电流消耗为17mA,接收模式下为15mA,睡眠模式下为0.7 μ A。其设备可大多时间进入睡眠状态,周期性醒来。睡眠模式下,收发电路关闭,极大限度减少功耗,醒来时通过检查信道,与协调器同步,发送或接收数据。ARM芯片支持两种节电模式:空闲模式和掉电模式。掉电模式,振荡器关闭,处理器状态和寄存器、外设存器及内部SRAM值被保持。复位或特定的不需要时钟仍能工作的中断,可终止掉电模式并使芯片恢复正常运行。

    本文通过软件控制,ARM芯片与CC2420间歇性地工作在接收状态。不接收数据时,芯片CC2420处于睡眠模式,ARM芯片处于掉电模式(功耗几乎为零),可大大减少系统的功耗。MCU通过外部中断(CC2420的32kHz晶振的休眠模式定时器产生的外部中断EINT3,15引脚)退出掉电模式,继续工作。从而延长电池寿命,达到节能目的。

7 结束语

    ZigBee技术是一种结构简单、低功耗、低数据速率、低成本、高可靠性的双向微功率网格式无线接入技术。集成了计算机技术、传感器技术、无线宽带通信技术、数字控制技术等诸多学科的技术。ZigBee技术与ARM技术结合使用,实现了油田信号传输的无线化,频谱利用高效化,生产信息化。在当今频谱资源日益紧张,组网成本居高不下的情况下,深入研究ZigBee WSN具有深远的意义。

关键字:无线传感网络  ZigBee  低能耗  油田监控

编辑:金海 引用地址:http://www.eeworld.com.cn/gykz/2009/1203/article_2421.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
无线传感网络
ZigBee
低能耗
油田监控

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved