无传感器单电流检测的无刷直流电机控制

2009-06-08 17:08:21来源: 微计算机信息

1 概述

      直流电动机以其优秀的线形机械特性、较宽的调速范围、大的启动转矩、控制方法较简单等优点,在各种驱动、伺服系统中有着广泛的应用[1],但传统的直流电机中的电刷和换向器由于直接接触、摩擦造成的磨损、火花、噪声等是一个不可忽视的问题。永磁无刷直流电机(PMBLDCM,以下直接简称为BLDCM)利用电子换向替代了机械换向,没有磨损、火花,噪声大大减小,目前有着大量的应用,但如何实现最低成本的最优化控制,迄今为止尚无完美的解决方案。本文给出了较之大部分控制方法成本更加低廉、结构更加简单的解决方案,并通过实验进行了验证。

      对于无刷直流电机,控制方法的核心是要获得电机位置或速度的实时信息。目前获得位置、速度信息的方法主要有两种:1.依靠霍耳元件或者码盘来获得位置、速度信号[2],这种方法比较直观简单,但是存在如下问题:增加了器件成本,在无法加装传感器的时候无效;2.无传感器(Sensorless)方法,即不加装传感器,目前主要有反电动势过零检测法[3][4]、三次谐波分析法[5]、Kalman预测法[6],而这几类方法大都局限于反电动势为梯形的BLDCM,而且有的需要加装特别的外部电路[3][4],在一些场合下无法实现;有的算法复杂,会造成较大的实时误差[6],也不是很实用。目前一些公司如NEC,Renesas已经开发出了针对正弦反电动势BLDCM的无传感器的控制芯片,但是价格贵,调试繁琐,升级不方便是很大的问题。本文给出了一种新的针对正弦反电动势电机的控制方法,控制采用了TI公司DSP芯片(TMS320LF2407A),核心代码完全用C语言开发,便于调试、升级,同时实现了很好的启动和调速功能,并对整个电路进行了最大的简化,无需加装特别的采样电路,利用系统中的电路保护电阻完成对电流的采样。

2 系统结构综述

      参考图1,本系统中通过单电流采样,在DSP中实现电流鉴别算法和滤波算法,得到对应的三相电流,通过速度位置估算算法计算出电机转子的当前位置和速度,然后利用PI反馈算法生成新的PWM作用于电机之上,完成一个控制流程。这样循环往复,实现了电机从启动到正常运转以及调速的功能,下面将分别阐述各部分的原理与实现。




图1 BLDC控制系统示意图

3 单电流采样的实现

      如图2所示,电机的驱动采用了七段式的空间矢量法(SVPWM,Space Vector PWM),利用六个依次相差60度的基本矢量和全0矢量(与全1矢量等效),根据不同的作用时间合成按给定转速作圆周转动的旋转矢量。



图2 SVPWM波形生成及单电流采样示意图

      从上图中我们可以看出,一个SVPWM周期可以划分成七个小的时间段(此即七段法名称的由来),不同的时间段对应不同的开关管控制电压,不同的控制电压造成了逆变电路中功率开关管不同的通断状态,而不同的通断状态则对应着不同的电流流向,因此只要我们知道了当前的电流流向状态,就可以从两次不同时间的采样电流(分别对应若干电流之和)中提取出需要的电流。以第0扇区为例(如图2右侧所示),在第一次电流采样中得到了Iu,第二次得到了(Iu+Iv),由于在很短的时间内,电流不会发生突变,这样就可以根据(Iu+Iv+Iw=0)推算出三相电流,完成了单电流采样(One-shunt current detection)。

      这一算法简洁明了,但也存在着一定的问题:第一,在采样的过程中往往会引入较多的噪声,需要进行滤波;第二,存在扇区边界切换问题,我们从图2中可以看出,在旋转矢量跨越边界的时候,由于某一基本矢量作用时间太短会导致采样无法完成,这个时候,可以通过限制作用时间最小值来保证采样过程正常进行,但这样必然会使生成的正弦波发生畸变,我们通过简单的滤波(例如限制两次电流采样值的差异幅值,根据历史值修正新值等)去掉畸变点,可以实现很好的效果。

      实际采样以及滤波处理结果如下(图3),从图中可以看出通过滤波达到了很好的电流检测效果,完全可以满足进一步的控制需求。


  
图3单电流采样电流结果(未滤波与滤波后的比较)

4 无位置、速度传感器下电机控制方法详述

      这里将从电机的初始化启动、正常运转和调速三个方面叙述电机控制的全过程,并给出电机控制算法的流程图,让读者更能够从整体上了解这一控制方法。

      启动过程:由于整个系统没有传感器以获得电机的实际位置,如果从任意位置启动,可能会造成电机反转甚至启动完全失败,因此需要对电机转子位置进行初始化,即把后面控制算法中涉及到的转子角度的初始值清零。我们采用的初始化方法是生成一个固定的PWM脉冲序列,该序列的特点是只作用于在某一相,最后将电机锁定于某一磁极,达到了初始化的目的。

      正常运转:目前我们采用TI公司的TMS320LF2407A作为控制的DSP,该DSP本身具备PWM 控制寄存器,通过较简单的程序就能完成前面所述的七段法SVPWM波的输出。
整体控制算法流程如图4所示:




图4控制算法流程


      电机通过单电流采样得到两个采样电流值,通过电流识别方法,计算出三相电流,利用Clarke和Park变换将电流映射到d、q坐标系下,估算出角度和速度值,通过结合了积分分离的PI控制算法,完成对电机的反馈控制,然后经过Park逆变换,控制生成了新的SVPWM波,完成一次循环。这里用到的位置、速度估算函数由于篇幅所限,将另做描述。

      调速的方法:在电机运转过程中,当需要调整转速时,我们采用分段加减速的方法,将给定目标速度和电机当前速度之间分成若干小段,逐级进行调速,从而达到很稳定的调速效果。

5 实验结论及进一步的工作

      目前我们已经在一台92BL(1)C50-15H的BLDC上实验成功了上述控制算法,完成了从启动到正常运转、加减速、拖动负载的全部工作,电机运行平稳,噪声小,输出转矩稳定。我们测试了双电流采样和单电流采样的方法,均达到了理想的效果。目前正在进行将控制方法移植到空调压缩机上的尝试,已取得初步成功,下一步将改进算法,增加谐波补偿功能,使电机运转更加平稳,测试对更多种型号电机的控制,并考虑进行工业上的应用。

      本文作者创新点:采用电机保护电路电阻作为唯一的电流采样电阻,结合单电流采样鉴别算法得出三相电流,实现了对反电动势为正弦波的BLDC的无传感器控制。

关键字:单电流检测  无传感器  正弦波形状反电动势  空间矢量法  无刷直流电机

编辑:金海 引用地址:http://www.eeworld.com.cn/gykz/2009/0608/article_1746.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
单电流检测
无传感器
正弦波形状反电动势
空间矢量法
无刷直流电机

小广播

独家专题更多

TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved