datasheet

基于单片机+CPLD的多路精确延时控制系统设计

2008-11-12来源: EDN CHINA 关键字:CPLD  机器周期  设计指标  系列单片机  延时时间  调整精度  脉冲输出  控制系统

  1 引言

  现代控制系统中控制对象可能是复杂、分散的,而且往往是并行、独立工作的,但整体上它们是相互关联的有机组合。因此,控制信号的时序逻辑则要求更加精确。CPLD单片机为控制系统提供了技术支持,由CPLD和单片机组成的多机系统具有逻辑控制方便,时序精确,并行工作,人机接口友好等优点。因此,本文提出了一种基于CPLD与单片机控制的多路精确延时控制系统的设计方案。

  2 设计指标与系统原理

  2.1 设计指标

  输出多路脉宽为10 ms正脉冲信号;

  脉冲输出时间独立调节、显示;

  时间调整范围与精度为微秒级的调整范围为l~199μs,调节精度为lμs;毫秒级的调整范围为1~199 ms,调整精度为1 ms;

  提供计时基准信号和工作状态提示声音;

  9 V电池供电。

  2.2 系统设计原理

  2.2.1 系统时钟

  本系统设计由CPLD和多个单片机组成,CPLD对24 MHz高精度一体化晶体振荡器二分频得到多路同步时钟信号作为多个单片机的系统时钟,并由各个单片机外脉冲信号引脚XTAL2注入,二分频确保信号的占空比为50%,满足单片机时钟脉冲信号高低电平持续时间大于20 ns和最高脉冲频率为12 MHz的要求,同时也提高系统的可靠性。5l系列单片机采用定时控制方式,具有固定的机器周期,1个机器周期共有12个振荡脉冲周期,则机器周期是振荡脉冲的12分频。本系统采用12 MHz振荡脉冲频率,1个固定机器周期为1μs,因此能保证设计指标所要求的最高控制精度。

  2.2.2 同步计时启动信号

  本系统设计由外部按键提供启动信号,由于机械接触点的弹性及电压突跳等原因,按键存在抖动效应,为保证按键准确识别,本系统设计采用软件去抖动,再经单片机引脚输出无电压毛刺的稳定启动信号,再经CPLD变换后,可提供多路同步计时启动信号。

  2.2.3 输出信号

  本系统设计采用10 ms单脉冲信号作为各模块单元控制输出信号,其输出形式可根据需要通过软件调整,并保证系统输出信号的时序与逻辑关系。

  2.2.4 系统时序

  系统时序图如图1所示,在计时脉冲的驱动下,按键信号经去抖动变换、CPLD逻辑同步后形成计时启动信号(0一n),以计时基准脉冲的前沿为计时起点,经设定延时后,系统输出相应的输出信号,其延时时间可独立调整,信号输出形式可由软件编程设置。图l采用单一正脉冲作为输出信号。

  2.2.5 系统原理框图

  电源稳压单元实现系统5 V电源的稳压与滤波。单片机采用外部系统时钟。主控单片机CPUO完成按键检测、计时基准信号输出和系统提示声音输出等功能。NO.1~N0.n单元完成时间调整与显示、μs/ms(微秒/毫秒)变换和信号输出等功能,CPLD完成时钟2分频、同步计时脉冲输出和计时启动信号同步输出功能。图2为多路精确延时控制系统原理框图。

  3 硬件电路设计

  3.1 主控单元

  每个系统都由独立的主控单元组成,如图3所示。主控单元由电压、CPUO和CPLD同步控制模块等组成。电压模块完成由可充电电池电压到稳定的5 V系统电源变换与滤波。CPUO单元模块选用ATMEL公司51系列单片机AT89S52A。AT89S52是低功耗、高性能CMOS 8位微控制器,具有8 KB在系统可编程Flash存储器、256字节的随机存取数据存储器(RAM)、32个外部双向输入/输出(I/O)端口、5个中断优先级2层中断嵌套中断、2个16位可编程定时计数器、2个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器,兼容标准MCS一5l指令系统。CPUO模块完成按键信号检测,工作状态提示音输出,计时基准信号输出等功能。CPLD同步控制模块采用ALTRA公司EPM7032SLC44为控制核心。EPM7032SLC44是MAX7000 CPLD,是基于先进的多阵列矩阵(MAX)架构,采用先进的CMOS制造工艺,提供从32到512个宏单元的密度范围,速度达3.5 ns的引脚到引脚延迟。支持在系统可编程能力(ISP),可以在现场进行重配置。CPLD同步控制单元完成时钟分频与同步,按键信号同步等功能,ProKram插座是CPLD的编程接口。

 

  3.2 输出控制单元

  每个系统由n(本系统设计中n=9)个输出控制单元组成,这n个单元输出控制独立并行工作,如图4所示。N0.1~N0.n以ATMEL公司5l系列单片机AT89C2051为核心。AT89C205l是低功耗、高性能CMOS 8位单片机,具有15个双向输入/输出(I/O)端口、片内含2 K字节的可反复擦写的只读Flash程序存储器和128字节的随机存取数据存储器(RAM);采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS一5l指令系统。输出控制单元(NO.1~NO.n)并行工作,完成延时时间设置、μs/ms变换设置、控制信号输出和延时显示等功能,延时时间显示通过单片机串口实现,由3片串/并变换器件74LSl64驱动3个共阳数码管。

  4 系统软件设计

  本系统软件设计包括CPUO单元、NO.1~NO.n输出单元及CPLD单元程序设计。由于对时间要求严格,采用汇编语言编写,信号输出由中断程序完成,由于中断响应过程、现场保护以及中断后必要的设置条件检测需要时间,所以软件必须通过容余指令(比如NOP)的延时,可保证counter0输出和控制信号延时起点在同一时刻。

  CPU0单元程序流程如图5所示。CPU0主程序完成系统初始化、按键检测、去抖动信号输出和工作状态提示音输出等工作,中断服务程序计时基准信号counterO输出。输出控制单元NO.1一NO.n程序流程如图6所示,各单元主程序完成μs/ms设置检测,延时设置读取,延时时间显示,中断程序完成控制信号输出功能。CPLD程序采用VHDL语言编写,采用QHalftusⅡ软件编译仿真。

  5 结语

  该系统设计可应用于电容组(9只)放电控制系统,在放电电子开关控制端、负载端测量以及微秒级延时范围内,延时误差小于O.1μs,毫秒级延时范围内,延时误差小于50μs。实际测试显示,系统实现了设计要求的调整精度。基于单片机+CPLD的多路精确延时控制系统充分利用单片机和CPLD的各自特点,实现主要设计指标。实际应用证明,该系统能够完全满足时序逻辑要求中严格控制系统的控制需求。

 

关键字:CPLD  机器周期  设计指标  系列单片机  延时时间  调整精度  脉冲输出  控制系统

编辑:孙树宾 引用地址:http://www.eeworld.com.cn/gykz/2008/1112/article_1356.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:PLD与AVR总线通信接口VHDL设计与实现
下一篇:不安气氛笼罩北电中国4000员工

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

AVR单片机读写CPLD

项目中需要使用CPLD完成一部分算法设计,参数由AVR给出,因此需要完成AVR和CPLD的通信。因此写了一个测试程序。CPLD挂在AVR的数据和地址总线上,AVR使用ATmega128,在CPLD中设置几个寄存器,通过AVR读写寄存器来实现两者之间的通信。 Mega128的外部存储空间从0X1100开始,因此只需要配置相应的寄存器后读取或者写入相应的地址就可以,程序比较简单,注释中都有说明,仅供参考。 /******************************************************************* 名称:mian.c 功能:测试AVR与CPLD的通信
发表于 2018-04-18

STM32通过FSMC读写CPLD

STM32通过FSMC读写CPLD的程序,CPLD挂在STM32的地址线和数据线上,将CPLD看做片外RAM的方式来进行读写,在我做的板子上CPLD挂在第四个区,因此基地址是0x6c000000,通过FSMC来进行读写,程序较为简单,具体的地方在函数中都有注释,仅供参考。 /**************************(C) COPYRIGHT emouse 2011*************************** 名称:CPLD.c 功能:配置fsmc,CPLD读写函数 作者:emouse 时间:2011.1.2 版本
发表于 2018-04-18

单片机/CPLD结构体系在电子设计中的应用

    自20世纪80年代单片机引入我国以来,学习和应用单片机的热潮始终不减,特别是MCS51系列。这是由单片机的特点决定的。实际上,从单片机/CPLD应用通用数字集成电路系统,到广泛应用单片机,是我国电子设计在智能化应用水平上质的飞跃。据统计分析,单片机的销量单片机/CPLD到目前为止依然逐年递增,而且在很长一段的时间内,单片机依然会是电子设计的主角(虽然这一地址已经受到了CPLD的挑战)。     1 纯单片机系统优缺点    ①大量单片机/CPLD的外围芯片和接口电路使得单片机应用系统的设计变得简单而且快捷,新型单片机的上市和高级语言的支持(如C51
发表于 2018-04-02
单片机/CPLD结构体系在电子设计中的应用

CPLD器件在单片机控制器中的应用分析

    自动控制的对象五花八门、品种繁多,要求控制器能够模块化、标准化、灵活配置;进入商品经济时代,允许设计者的开发周期越来越短,从几年、几月缩短到几月、几天;有时合同临近结束前,用户还会提出更改设计条款的要求。因此,需要设计者开发出适应性强、便于修改、配置灵活的控制器,以满足用户需求,争得商机。    从成本考虑,有时以单片机为核心器件,量身度造地为被控对象设计专用控制器,仍是一种较好的选择。     CPLD器件与单片机结合优势互补、相得益彰    单片机的一些优缺点    单片机具有强大的信息处理、逻辑分析
发表于 2018-04-02
CPLD器件在单片机控制器中的应用分析

基于单片机和CPLD的DDS正交信号源滤波器的设计

    1 前 言    由于传统的多波形函数信号发生器需采用大量分离元件才能实现,且设计复杂,这里提出一种基于CPLD的多波形函数信号发生器。它采用CPLD作为函数信号发生器的处理器,以单片机和CPLD为核心,辅以必要的模拟和数字电路,构成的基于DDS(直接数字频率合成)技术、波形稳定、精度较高的多功能函数信号发生器。    2 系统设计    图1给出系统设计框图,该系统设计主要由CPLD电路、单片机电路、键盘输入液晶显示输出电路以及D/A转换电路和低通滤波器等电路组成。    2.1 频率合成器 
发表于 2018-04-02
基于单片机和CPLD的DDS正交信号源滤波器的设计

基于单片机与CPLD的混合式步进电机PWM驱动技术

为:A-AB-B-BC-C-CA-A……。  2混合式步进电机系统构成与实现  基于AVR单片机和CPLD的三相混合式步进电动机控制系统的结构框图如图2所示。系统主要包括脉宽调制产生电路、逻辑合成电路、功率驱动电路和电源等4个部分。本设计采用的方法是:单片机采集到现场信号后计算出步进电机运转所需要的控制信息,经过参考电路与反馈信号发生相互作用,得到脉宽调制信号后再传给CPLD,CPLD把接收到的信息转换成步进电机实际的控制信号,即转动速度和转动方向,输出给电机的功率驱动电路模块。下面具体介绍脉宽调制产生电路和脉宽调制产生电路部分。2.1 PWM信号产生脉宽调制产生电路主要有单片机和外围的电路组成,如图3所示。  单片机主要完成转速、转向和细分
发表于 2018-03-31
基于单片机与CPLD的混合式步进电机PWM驱动技术

小广播

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2018 EEWORLD.com.cn, Inc. All rights reserved
pt type="text/javascript" src="//v3.jiathis.com/code/jia.js?uid=2113614" charset="utf-8">