datasheet

基于MSP430F413的新型智能水表的设计

2008-06-27来源: EDN_china 关键字:智能水表  系列单片机  硬件结构图  中断源  主循环  基表  乘法器  MSP430微控

  针对传统水表落后产生的一系列问题,国家建设部提出了城镇居民住宅“三表出户”的要求。所以目前国内的很多水表生产厂家都在进行产品新型化的探索,大部分采用单片机技术,智能水表系统的实用性研究己成为当前仪表行业的热点之一。本文介绍的就是一种基于MSP430F413单片机的智能水表的设计。

  本论文以智能IC卡水表系统为研究对象,重点探讨了基于MSP430F413型超低功耗单片机在低功耗智能仪表上的应用与开发。论文首先提出利用IC卡技术智能水表系统的总体设计方案;设计了系统控制的硬件电路结构和研究了软件控制流程的实现,采用软硬件结合的方法,对系统的低功耗、抗干扰性设计及安全性问题作了一定的分析与研究。

  MSP430F413简介

  TI公司MSP430 F413系列单片机是一种超低功耗的混合信号控制器,其中包括一系列器件,它们针对不同的应用而由各种不同模块组成。它们具有16位RISC结构,CPU的16个寄存器和常数发生器使MSP430微控制器能达到最高的代码效率。灵活的时钟源可以使器件达到最低的功率消耗。数字控制的振荡器(DCO)可使器件从低功耗模式迅速唤醒,在小于6μs的时间内被激活到正常的工作方式。MSP430F413系列单片机的16位定时器是应用于工业控制如纹波计数器、数字化电机控制、电表、水表和手持式仪表等的理想配置,其内置的硬件乘法器大大增强了其功能并提供了与软硬件相兼容的范围,提高了数据处理能力。

  智能水表的工作原理

  本文设计的智能水表的工作原理:用户先购买IC卡(用户卡),并携带IC卡至收费工作站交费购水,工作人员将购水量等信息写入卡中。用户将卡插入IC卡水表表座内时,IC卡水表内单片机识别IC卡密码,校验并确认无误后,将卡中购水量与表内剩余水量相加后(初次使用时,剩余水量为零),写入IC卡水表内的存储器,进而控制电阀开通阀门供水。

  用户在用水过程中,带磁感器的叶轮在水流的冲击下转动,通过磁传递,带动上表罩上的梅花齿轮转动并使多极齿轮转动,实现机械累计计量,每当计量到0.01m3时由位于0.01m3处的计量传感器向单片机发出同步的计量脉冲信号,此时,MSP430F413将输入的有效脉冲计入并计算用水量,IC卡水表内剩余水量就会相应的减少一个计量单位,累计用水量就会增加一个计量单位,LCD显示屏上显示剩余水量等相关用水数据。当剩余水量低于一个定量时(有一个事先设定好的最低剩余水量值),IC卡水表的报警系统启动(蜂鸣器响起),提醒用户及时到供水部门再次购水,这时,LCD显示屏上显示“请购水”字样。当剩余水量为-1时,单片机驱动电阀自动关闭,切断水源,停止供水并报警。在用户重新购水读卡存入后,再开通电阀供水。在正常情况下,阀门处于开通状态,当遇到剩余水量为-1或者电池电压小于3V等其他特殊情况时阀门会由开通变为关闭状态。

  系统方案设计

  本文设计的智能水表系统主要由微处理器、流量传感器、电动阀门、IC卡读/写器、LCD液晶显示及电源等组成,硬件结构图如图1所示。

  

  图1 智能水表的原理框图

  1 系统硬件的设计

  系统硬件原理框图如图2所示。

  

  图2 系统硬件原理框图

  ① 电源低电压检测电路

  本系统采用三节干电池4.5V作为供电电源,使用一段时间后,干电池会放电,为了保证整个系统,特别是阀门的正常工作,需要对电源进行实时检测,当电能不能满足系统要求时,及时报警提醒用户更换电池,以免造成不必要的麻烦。

  为提高智能水表运行的可靠性和安全性,设计中采用电源电压实时监测电路。如图3所示。电压检测芯片采用日本理光R3111H301C低电压检测芯片,R3111H301C输出电压为3.0V,最大工作电流为3.0μA,一般情况下的工作电流仅为1.0μA,高精度集成,完全满足系统低功耗设计的要求。当电源电压正常时,芯片的输出脚输出为高电平;当电源电压小于3.0V时,输出脚输出低电平,即P1.1输出低电平,P1.1下降沿中断有效,单片机检测到该信号时即转入中断服务程序处理,这时LCD液晶显示“换电池”字样,同时蜂鸣器报警提示用户更换电池,MSP430F413内部基本定时器使能中断,定时1s检测电压是否回升,如果回升蜂鸣器再次发出一声警报提示,LCD液晶上的“换电池”显示字样清除。如没有回升,则关闭阀门,直到用户更换电池,才再次开启阀门供水。由于MSP430F413工作用电压是3.0V,所以需要一个电压转换芯片将4.5V电压转换成3.0V供MSP430F413和其他外围模块使用,本电路中用的是RH5RL30AA—电压调整芯片,它具有高精度的输出电压,工作电流极低只有1.1μA。

  本系统中水表的基表采用符合ISO 4064B标准的旋翼式冷水水表。该表计数机构与测量机构经磁耦合传动,采用干簧管传感器计量发讯,每流经0.01m3水时产生一个脉冲。为了有效防止各种可能的干扰抖动而产生的多计数现象,本设计中采用双干簧管双脉冲通过由电容和电阻组成的防抖电路输入单片机计数,当两个脉冲输入段依次有脉冲输入的时候才产生一个有效脉冲计数,两个脉冲有互锁功能,P1.3和P1.4作为脉冲输入端。每输入一个脉冲,在存储器中减去相应水量。表内设有磁保护装置,具有较强的抗外磁干扰能力。

  ③ 阀门控制电路

  阀门控制是水表控制系统中一个很敏感的部分,关启阀门的可靠性差,将会给供水部门带来很大的问题。本系统采用的是电动球阀,工作电压3V,工作时电流仅50mA。设计中利用直流电机带动半球阀正转或反转的方式来控制阀门的开启和关闭。利用MSP430F413单片机的P6.6和P6.7来控制阀门的正反转动,利用MSP430F413内部比较器(P1.6CA0,P1.7CA1)检测堵转电流来控制电机运行。当电机正常工作时,CA0>CA1,一旦堵转,电流迅速增大,CAOUT=0,来通知MSP430F413电机转到位。定时器定时1s检测电机是否到位,有效地解决阀门关闭不可靠问题。当正向端输入高电平,反向端输入低电平时,阀门开启;反之,阀门闭合。当单片机P6.7口输入低电平、P6.6口输入高电平时,正向端(ON)输出高电平,反向端(OFF)输出低电平,开启阀门,开启到位时,由单片机P1.5口输入检测信号,动作停止;反之,正向端输出低电平,反向端输出高电平,关闭阀门,同样由单片机P1.5口输入关闭到位检测信号。

  2 系统软件的设计

  图4是主程序流程图。单片机上电复位后主程序采用顺序执行的方法,逐个扫描各个自定义标志位,检查是否有动作发生,若有发生则转入相应子程序处理,处理完后回到主程序,继续扫描其后的标志位,最后进入低功耗状态,等待下一次中断唤醒,唤醒后同样循环一遍,又进入低功耗状态。由于各信号以中断的方式进入的,所以要特别注意中断的优先级及中断的嵌套问题。采用模块化方法设计各个子程序。根据不同功能,定义了不同的功能模块。明确入口出口,相互之间的调用关系,以供调用。主要软件模块有:IC卡读写模块,液晶显示模块,计量模块,FLASH读写模块,低电压保护模块等。上电后首先对系统进行初始化。初始化包括对内部存储器单元清零、特殊功能寄存器置初值、液晶显示的设置等。接着进入主循环,判断故障、电源电压是否正常等,若一切正常则开阀供水。无论在什么情况下只要有低电压信号出现,系统就提示欠压,蜂鸣器报警,液晶显示,提示用户更换电池:当剩余水量低于设定值时,系统液晶显示提醒用户“请购水”,如果用户没有及时购水重新插卡充值,当剩余水量为负时,系统控制阀门关闭,停止供水。

  

  图4 系统软件设计流程图

  3 系统低功耗的设计

  在单片机控制系统中,系统的功耗往往和电源电压的大小成一定比例关系,电源电压高,系统的功耗相应的也会增大,因此在功耗要求很严格的智能水表控制系统中,在保证功能的前提下,尽量选择低的电源电压。本系统中选用三节碱性干电池4.5V供电。本文所设计的智能水表的能耗主要由三部分构成:第一部分是控制器中单片机(CPU)液晶正常运行时的持续性能耗,这是主要的功耗;第二部分是IC卡水表执行机构(电阀)动作时的瞬时能耗;第三部分是IC卡水表一些辅助功能如声音报警等的能耗。上述智能水表能耗的第一、二部分占了总能耗的95%以上。因此,在设计时主要考虑:选择低功耗电动阀;选择低功耗器件(CMOS型);选择低的工作电压和低的工作频率;软件设计时选择低功耗的系统运行模式。

  4 系统抗干扰的设计

  本系统中抗干扰设计从两方面来考虑,一是在硬件设计上采取适当的措施来抑制和消除干扰,例如采用电磁干扰滤波器,如图5所示。另一方面是从系统软件设计上采取一定措施来提高系统的抗干扰能力,即使系统受到干扰,也能自动地快速恢复正常上作。如:尽量减少中断源,采用中断与查询相结合的方法,保持尽.可能短的中断开放时间,随开随关;在程序关键的地方人为地插入空操作指令,保护CPU在受到干扰,程序“弹飞”时指令不被拆散等软件措施。

  图5 电磁干扰滤波器在系统中的应用

  结束语

  实践证明:本文所设计的智能水表从管理上讲对用户实行“先买水后用水”的预付费管理方式,在一定程度上改善传统管理模式的种种弊端,符合我国的基本国情,有很强的适用价值。

关键字:智能水表  系列单片机  硬件结构图  中断源  主循环  基表  乘法器  MSP430微控

编辑:孙树宾 引用地址:http://www.eeworld.com.cn/gykz/2008/0627/article_1029.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:DSP和FPGA在大尺寸激光数控加工系统中的运用
下一篇:面向系统LSI开发的高速、低功耗微型平台

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

智慧水务配合高精度智能水表,轻松解决漏损烦恼

管网漏损对于大部分自来水公司来说,都是一个棘手的问题,也是供水产销差居高不下的重要原因之一。对于藏在地下管段中的漏洞,过去只能靠人工一点一点排查,需要大量时间及人力。如今智慧水务给了我们一个全新方式,只需稍稍对管网进行改造,装上高精度智能水表,就能实现很好的漏损监测控制效果。Question:智慧水务究竟如何降低漏损?      海威茨智慧水务平台提供的一种叫 “DMA分区计量漏损分析”的方案,顾名思义,就是通过分区域的供水计量来分析漏损情况,具体实施过程如下:Ø  供水管网层级划分:对供水管网按实际情况进行层级划分,例如将城市中一个辖区设为一级区域,其中的居民集中
发表于 2018-04-28

基于MSP430单片机为控制核心的IC卡智能水表控制器的设计方案

4442卡主要包括三个存储器:256×8位E2PROM型主存储器(地址0~31为保护数据区、32~255后24字节为应用数据区,该区数据读写不受限制,擦除和写入受加密存储器数据校验结果影响)、32×1位PROM型保护存储器(一次性编程以保护主存储器保护数据区,防止一些固定的标识参数被改动,保护存储器同样受加密存储器数据校验结果的影响)、4×8位E2PROM型加密存储器。读卡和写卡流程如图6和图7所示。    3 结论    本文讨论了以MSP430单片机为控制核心的IC卡智能水表控制器的设计方案,该控制器具有水量计量、换算充值、各种异常的检查等功能,并带有RF和M-Bus抄表的扩展接口。该系统实现
发表于 2018-04-05
基于MSP430单片机为控制核心的IC卡智能水表控制器的设计方案

TMR传感器的原理和特性以及其应用解析

、高灵敏度。薛松生博士给我们举了几个案例。在流量计领域中,智能水表、智能热量表一般都采用电池供电,因此对传感器的功耗要求非常苛刻。当前水表方案采用干簧管、低功耗霍尔器件以及韦根传感器等,要么频率响应非常低导致测量精度不够,要么就是功耗很大导致电池寿命很短。而采用韦根传感器的智能热量表电路复杂,可靠性差,小流量的测量也不精确。另外,采用霍尔器件的传统电表方案温度性能比较差,由于灵敏度低需要额外增加聚磁环,导致体积和成本增加。目前,采用两个TMR超低功耗磁传感器的方案,根据叶轮转动的磁场变化测量转速,得到水表的瞬时流量,并且功耗非常低(超低功耗全极磁开关MMS2X1H,双极磁开关MMS1X1H,全时供电下只有1.5uA电流,频响大于1KHZ
发表于 2018-01-23
TMR传感器的原理和特性以及其应用解析

海威茨无磁水表携手自来水公司新型智能水表逐渐占领市场

日前,来自全国各地的多家自来水公司陆续投入使用由青岛海威茨仪表有限公司(以下简称“青岛海威茨”)自主研发生产的无磁智能远传水表,部分水司的智慧水务平台也已在营业厅成功上线,其客户管理、财务管理、抄表结算等功能效果显著。此次无磁水表的大规模投入使用,代表着越来越多的自来水公司正式加入智能水表大军。据了解,无磁水表的原理是通过传感器进行信号拾取,当水流推动叶轮时,传感器会随着叶轮转动得到信号变化,电路盒上的算法根据传感器拾取的信号计算出流速。由于拾取过程是无磁的,整个拾取过程是不怕强磁干扰和气泡影响的,不论在大口径还是小口径,都能拥有良好表现,这也是多家水司选择无磁水表的原因。鉴于无磁水表的种种优点,近年来其已成为越来越多的水表
发表于 2018-01-02

论国内新型智能水表——打开智能大门后如何前行?

国内目前号称智能水表的有很多,但脱离了机械齿轮计数、采用新计量方式、智能化程度较高的,其实只有三种:超声波表、无磁水表和电磁流量计。而国内生产电磁流量计的厂家不多,所以我们今天来说说超声波水表和无磁水表。目前超声波水表在国内新型智能水表中占较大比例,发展也是稳中带升。它是通过声波在水流加持下的传播速度来计算流速的,所以完全不需要传动部件,但与此同时对结构设计的要求就非常高,不同的口径下,结构设计对计量精度会有或大或小的影响。如DN50口径下,探头外露在管道中容易造成涡流,计量结果就会产生较大偏差;但在DN400口径下,探头的影响就可以忽略了。而其完全不依赖传统机械式测量方法,也就意味着计算算法必须十分精准,否则造成的误差是不可估计
发表于 2017-12-28

浅谈智能手机与智能水表行业发展的相似之处

苹果公司是智能手机时代的开创者,从2007年发布第一款iphone开始,手机行业就被划世纪性的超大电容屏拉进了一个新时代。随后,“智能”这个词开始从方方面面渗透进我们的生活,时至今日,不光是电脑、手机,连家用洗衣机、电视、空调,甚至微波炉和电饭煲,都是可以联网智能操控的了。与此同时,我们水表行业也步入了智能时代,涌现出了无磁水表、超声波水表等新产品。比起计量准度有限、不便管理的传统机械表,智能水表不仅装载了精细的计算算法,使得计量结果更加准确,还能测量其他数据,如末端水流速度、持续时间等状态信息,并可同步在管理中心查看,让水表变成一个实时在线终端,随时为管理者所用。产品的智能化归根结底是为了加入物联网、从而更好地为生
发表于 2017-12-28

小广播

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2018 EEWORLD.com.cn, Inc. All rights reserved
pt type="text/javascript" src="//v3.jiathis.com/code/jia.js?uid=2113614" charset="utf-8">