datasheet

陶瓷扬声器系统的放大器设计

2008-05-04来源: 中华电子网关键字:扬声器  关系曲线  相位角  压电薄膜  相角  压电元件  D类放大器  等效串联电阻  

  如今的便携式设备需要更小、更薄、更省电的电子元器件。对于设计小巧的手机,动圈式扬声器成为了制造商能否生产出超薄手机的制约因素。在这一需求的推动下,陶瓷或压电扬声器迅速兴起,成为动圈式扬声器的替代方案。陶瓷扬声器能以超薄、紧凑的封装提供极具竞争力的声压电平(SPL),具有取代传统的动圈式扬声器的巨大潜力。动圈式扬声器和陶瓷扬声器的区别如表1所示。

  表1.陶瓷扬声器和动圈式扬声器的优点和缺点  

Ceramic Speakers Dynamic Speakers
Advantages Disadvantages Advantages Disadvantages
  • High efficiency
  • Very thin form factor
  • Tight manufacturing tolerances
  • Smaller acoustic cavity required
  • Large drive voltage required
  • Restricted low-frequency response
  • Capacitive load
  • Inexpensive
  • Proven technology
  • Smooth frequency response
  • Wide manufacturing tolerances
  • Inefficient
  • Thick solution size
  • Larger acoustic cavity required
  •  

      驱动陶瓷扬声器的放大器电路具有与驱动传统动圈式扬声器不同的输出驱动要求。陶瓷扬声器的结构要求放大器驱动大电容负载,并在较高的频率下输出更大的电流,同时保持高输出电压。

      陶瓷扬声器的特性 陶瓷扬声器的生产工艺与多层陶瓷电容器类似,与动圈式扬声器相比,这种制造技术可以使扬声器厂商更加严格地控制扬声器的容差。严格的容差控制对于权衡扬声器的选择非常重要,也影响着不同生产批次产品音频特性的可重复性。

      陶瓷扬声器在驱动放大器端的等效阻抗可以近似为主要由一个大电容组成的RLC电路(图1)。在音频频率范围内,陶瓷扬声器通常呈现容性。扬声器的电容特性决定了其阻抗随频率的提高而降低。图2为陶瓷扬声器阻抗随频率的变化关系,与1F电容相似。阻抗有一个谐振点,在这个频点扬声器的发声效率最高。1kHz频率附近阻抗曲线的下降表示扬声器的谐振频率。

      

      

      

      图1. 陶瓷扬声器主要表现为一个大的容性负载

      

      

      

      图2. 陶瓷扬声器阻抗与频率的关系,与1F电容非常相似 

      声压与频率及振幅的关系 陶瓷扬声器两端的交流电压导致扬声器内压电薄膜变形和振动;位移量与输入信号的幅度成正比。压电薄膜的振动使周围空气流动,从而发出声音。扬声器电压升高时,压电元件变形加剧,形成更大的声压,从而增加了音量。

      陶瓷扬声器制造商通常规定了扬声器的最大驱动电压,典型值15VP-P。电压最大时陶瓷器件的偏移量达到极限。外加电压大于额定电压时不会导致声压升高,反而增加了输出信号的失真度。图3为电压最大时,陶瓷扬声器输出声压(SPL)与频率的关系曲线。通过对比SPL与频率的关系曲线图以及阻抗与频率的关系曲线图,可以明显看出压电扬声器产生高SPL时,在自激频率处效率最高。

      

      

      

      图3. 当电压大于扬声器额定电压时输出信号失真加剧

      驱动陶瓷扬声器对放大器的要求 陶瓷扬声器制造商规定电压取最大值,即14VP-P至15VP-P时声压最大。这样一来,问题就转换成如何在单电源供电时产生这些电压。解决方法之一是用开关稳压器将电池电压升至5V。借助于5V电压,系统设计师可以选择桥接负载(BTL)的单电源放大器。桥接负载能够在扬声器上产生倍压效果。然而,用5V单电源为BTL放大器供电时,输出电压在理论上只有10VP-P摆幅。在该电压下陶瓷扬声器无法输出最高的SPL。为了得到更高的SPL,必须采用更高的电源电压。

      另一种做法是采用升压转换器将电池电压调节至5V或更高,这种方案本身也存在问题—即所需器件的尺寸。根据电感电流峰值可以判断总体方案的尺寸,为了保证磁芯不会饱和,电感尺寸必须足够大。市场上也可以找到大电流、小尺寸的电感。但这类电感的磁芯饱和电流额定值可能不足以满足要求,在高频条件下不能提供驱动扬声器所需的高压和大负载电流。

      驱动陶瓷元件需要大电流,同时还要避免出现限流。这是由于高频时陶瓷扬声器阻抗非常低。用来驱动陶瓷扬声器的放大器必须有足够大的驱动电流,当大量高频成分进入扬声器时器件不会进入限流模式。

      图4为采用MAX9788 G类放大器的应用电路。G类放大器有两个电源电压幅度,高压和低压。当输出信号较小时采用低压供电;当输出信号需要较高的电压摆幅时,将高压切换到输出级供电。由于G类放大器具有低压电源,因此,当输出信号较小时,效率比AB类放大器高。由于具有高压电源,G类放大器可承受瞬态峰值电压。

      

      

      

      图4. 采用MAX9788的典型陶瓷扬声器应用电路

      图4中的MAX9788采用一个片上电荷泵产生与VDD相反的负电源电压。当输出信号需要高压驱动时,负电源电压作用于输出级。MAX9788提供了一种驱动陶瓷扬声器的优化方案,比采用AB类放大器和升压转换器的传统方案更高效。

      扬声器制造商通常推荐给陶瓷扬声器串联一个固定电阻(RL),如图4所示。当信号包含大量高频成分时,用该电阻限制放大器的电流输出。在某些应用中,如果传输到扬声器的音频信号的频率响应带宽受到限制,也可以不使用这个固定电阻。对于放大器来说,使用电阻可确保扬声器不发生短路。

      现有的陶瓷扬声器电容约为1F。图4中扬声器的阻抗在8kHz时为20Ω,在16kHz时为10Ω。未来的陶瓷扬声器可能具有更大电容,使放大器在相同频率能够提供更大的电流。

      陶瓷扬声器与动圈式扬声器的效率 传统动圈式扬声器的效率很容易计算。音频线圈绕组可以近似为固定电阻与一个大电感串联。如果已知扬声器电阻,可用欧姆定律计算负载功率(P): P = IR,或P = V × I。扬声器的大部分功率被转变成线圈的热量。

      由于陶瓷扬声器具有电容特性,因此消耗功率时产生的热量不高。陶瓷扬声器消耗的是“无功”功率。无功功率非常小,与陶瓷器件的损耗因子有关。无功功率产生的热量很少。计算无功功率时不应直接采用公式P = V × I;应采用以下公式计算:

      = (πfCV2) × (cosΦ + DF)

      其中:

      C = 扬声器的容值

      V = RMS驱动电压

      f = 驱动电压频率

      cosΦ = 扬声器电流与电压间的相角

      DF = 扬声器损耗因子,DF值很低,取决于信号频率及扬声器的ESR

      由于理想的电容器电压和电流之间的相角为90°,并且陶瓷扬声器基本呈容性,cosΦ等于零,因此,陶瓷扬声器模型中的电容部分不会产生任何功耗。陶瓷材料和电介质的自身缺点造成扬声器电压落后于扬声器电流一个相位角,该相位角并非精确等于90°。理想相移(90°)与实际相移之间的微小差别定义为损耗因子(DF)。

      陶瓷扬声器的DF可以等效为一个小的等效串联电阻(ESR)与理想电容器串联。不要将串联电阻与放大器和扬声器之间的隔离电阻混淆。DF是所需频率下ESR和容抗的比值:2,3

      DF = RESR/XC

      举例来说,电容为1.6F,ESR为1Ω的陶瓷扬声器,由5VRMS、5kHz信号驱动时,无功功率为:

      = (π× 5000 × 1.6e-6× 52) × (0 + 0.05) = 31.4mW

      有功功率 与动圈式扬声器不同的是,虽然陶瓷扬声器本身不消耗有功功率,但是,在驱动放大器输出级以及功放和扬声器之间的外部电阻(RL) (图4)上会产生热量。外部电阻值越大,为放大器分担的耗散功率越大,它以牺牲低频响应特性为代价。

      驱动10Ω串联电阻的陶瓷扬声器时,总负载功率中无功功率占的比重并不大。大部分功率耗散在外部电阻上。  

      为了获得较好的低频响应,应选择小的外部电阻,但会要求放大器输出级耗散更大的功率。放大器的效率决定了放大器输出级功率。为获得大功率放大器,需要采用高效解决方案,如D类和G类放大器。负载端串联一个电阻,可以使功率消耗在负载网络,而不是扬声器。即使放大器效率为100%,功率也会消耗在串联电阻上,而非扬声器上。

      举例,5kHz时,提供给负载的总功率为629mW。效率为53%的放大器功耗为558mW。放大器功耗决定了实际器件的封装尺寸,如果必须用高频正弦波驱动陶瓷扬声器,则会消耗大量功率。

      结束语 便携式设备的小巧、轻薄设计是推动小型陶瓷扬声器应用需求的主要动力。陶瓷扬声器不同于传统动圈式扬声器,应考虑采用新的设计方案。陶瓷扬声器的电容特性要求放大器具有高输出电压和大输出电流,从而在工作频率范围内保持高压驱动。选择驱动陶瓷扬声器的放大器时,必须能够为复杂负载提供无功功率和有功功率。为了支持小尺寸、低成本方案,要求放大器具有较高的工作效率。为满足以上要求,需要采用与传统AB类放大器不同的拓扑结构。更有效的解决方案,如G类或D类放大器,成为极具吸引力的方案,综合考虑成本、元件数量等指标,G类放大器是能够获得最佳折衷的解决方案。

     

    关键字:扬声器  关系曲线  相位角  压电薄膜  相角  压电元件  D类放大器  等效串联电阻  

    编辑:孙树宾 引用地址:http://www.eeworld.com.cn/gykz/2008/0504/article_858.html
    本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

    上一篇:用数字隔离技术取代隔离放大器的应用实例
    下一篇:可重组多功能大数运算器的小规模硬件实现

    关注eeworld公众号 快捷获取更多信息
    关注eeworld公众号
    快捷获取更多信息
    关注eeworld服务号 享受更多官方福利
    关注eeworld服务号
    享受更多官方福利

    推荐阅读

    智能扬声器在设计过程中所要权衡的因素

    许多家用电器都在增加语音识别功能,以增强用户体验。但将整个生态系统联系在一起的产品是智能扬声器。 除了通过Wi-Fi®或蓝牙®启用设备播放音频内容以外,现在的智能扬声器可以与其他设备进行通信,如灯光、门锁或智能恒温器。  图1:作为一款媒体播放器,智能音箱要具有简洁,音质好的特点。作为一个智能家庭中心,必须具有准确的声音识别和连接到家里所有的智能设备。 基于这些大量的功能要在智能扬声器设计中有所考虑,并且要权衡在设计中其性能和效率方面的折衷问题。我们将在本文中讨论的两个主要设计特性:音频和人机界面(HMI)。 在音频方面,首先要考虑的是准确的语音识别。智能扬声器的特点就是它可以收听
    发表于 2019-01-14
    智能扬声器在设计过程中所要权衡的因素

    微软:智能扬声器超声波束生成房间图像

    1月3日消息 微软研究院一直在研究智能扬声器中常见的扬声器和麦克风阵列。他们发现一组扬声器可用于波束成形,允许它们将声音引导到房间中的特定位置。这使得研究人员可以使用远程扬声器来创建虚拟耳机。更有趣的是,如果扬声器具有超声能力,研究人员可以利用这种波束形成能力扫描房间,并使用回波来创建房间的图像。微软表示:类似于蝙蝠和海豚如何使用回声定位,我们正在研究在超声波带中使用波束成形来构建物体图像。我们可以通过使用面向给定方向的扬声器阵列来聚焦声音,朝着相同方向收听麦克风阵列,并捕获来自此方向的物体的反射。通过扫描空间,我们可以在该超声传感装置前面构建物体的图像。超声波的短波长允许检测到物体,甚至是小物体。这种低能耗超声探测设备可以生成
    发表于 2019-01-04
    微软:智能扬声器超声波束生成房间图像

    三星将展示OLED屏幕发声技术

           近年来,厂商们致力于为每一代智能机引入新的亮点。比如在即将到来的2019年,行业就要掀起一阵采用打孔全面屏的浪潮。与iPhone X宽厚的“刘海”缺口相比,打孔屏更适合嵌入前置摄像头,以进一步提升屏占比。不过随着消费电子展(CES 2019)的临近,有越来越多的证据表明,未来的Galaxy系列智能机,有望精简掉另一个组件 —— 扬声器。  韩“电子时报”周三报道称,三星计划在下个月的CES 2019期间,展示其OLED屏幕发声(Sound on Display)技术。这项技术能够消除对于外部扬声器的需求,直接通过面板来发声。  其基于振动和骨传导,让三星有机会在屏幕下层放置另一
    发表于 2018-12-28
    三星将展示OLED屏幕发声技术

    索尼无线可穿戴扬声器SRS-WS1 预售开启

    据官方可靠消息,2018年12月12日,索尼(中国)有限公司正式发布无线可穿戴扬声器SRS-WS1。其新颖的佩戴方式和创新性的结构设计配合的动态振动技术,可以带来不同于传统耳机与音箱的空间临场感。同时为了确保无线设备音频信号的高质量传输,SRS-WS1采用了2.4Ghz无线通信技术,近乎无延迟的连接方式可在不同空间带来细节更丰富的聆听体验。崭新佩戴方式+动态振动技术 带来不同以往的空间临场感索尼自Walkman开启全球音乐随身时代起,便一直专注于音频产品的技术研发,致力于还原声音的真实表现,为用户带来感动。无线可穿戴扬声器SRS-WS1凝聚了索尼众多专业音频技术,其中潜心研究的动态振动技术,通过左右两侧「Super Big
    发表于 2018-12-12
    索尼无线可穿戴扬声器SRS-WS1 预售开启

    谷歌修复Pixel 3 XL扬声器BUG

          Pixel 3系列手机自发售以来就小毛病不断,之前我们已经报道过其出现了录像声音过小的问题、扬声器杂音问题、只能后台3个APP的问题、出现双刘海的问题、限制第三方无线充功率的问题、充电过热自动关机的问题等等等等。  作为2款定价6000元左右的安卓旗舰,Pixel 3系列的表现并不令人满意。而且问题也没有结束,此前,许多收到Pixel 3 XL的外国网友在论坛上反馈,他们的手机出现了不明的“嗡嗡声”。  具体来说,这个问题似乎仅限于Pixel 3 XL,在某些音量下,或者歌曲、通知、视频声音下,Pixel 3 XL的扬声器会发出嗡嗡声,有时在非常低的音量下也可以听到。  就在11月份,谷歌
    发表于 2018-12-07
    谷歌修复Pixel 3 XL扬声器BUG

    歌乐推新型音响系统 可将汽车仪表板、车窗或车顶变成扬声器

    据外媒报道,日本歌乐有限公司(Clarion Co., Ltd)推出一个音响原型系统,该系统可将汽车仪表板等变成扬声器。在普通的汽车音响系统中,扬声器被嵌入在前门和后门等处,扬声器纸盆(cone paper)通过电子信号的振动产生声音。而在歌乐制造的音响系统中并没有用到扬声器。该系统通过使用小型振动器振动整个仪表板来产生声音。除仪表板外,车窗和车顶也可用作扬声器。由于该系统不再需要在车门等处嵌入大型扬声器,因而可以有效利用汽车空间,减轻汽车重要。此外,因无需为扬声器再在车门上钻孔,汽车的隔音效果也得以改善。歌乐的目标是在2020财年年末将该新型音频系统实现商业化。在2018年日本电子高新技术博览会上(Ceatec Japan
    发表于 2018-11-22
    歌乐推新型音响系统 可将汽车仪表板、车窗或车顶变成扬声器

    小广播

    电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD.com.cn, Inc. All rights reserved