一种实现RS 422通信协议的接口电路

2008-04-01 18:26:26编辑:ssb 关键字:RS  基准电压  接收电路  摆率  比较电路  负载电阻  方波信号  电阻阵列  负温度系

  目前通用的串行通信接口标准主要有RS 232,RS 422和RS 485,其中RS 232属于单端不平衡传输协议,传输距离短,抗干扰性差;RS 485与RS 422均为平衡通信接口,但RS 485他只有一对双绞线,工作于半双工模式。RS 422属于一种平衡通信接口,采用全双工通信模式,传输速率高达10 Mb/s,传输距离长2 000 m,并允许在一条平衡总线上连接最多10个接收器[1]。由于该类电路的优异性能,RS 422接口芯片已广泛应用于工业控制、仪器、仪表、多媒体网络、机电一体化产品等诸多领域。

  1 系统概述

  RS 422通信接口芯片系统框图如图1所示,主要包含数据发送模块和接收模块。接收模块主要是将通信总线差分电压转换成数字量送给主机,发送模块主要是将主机发送的数字量转换成差分电压输出。DIN是TTL/CMOS信号输入端口,TX1,TX2为相应的差分信号输出端。RX1,RX2为差分信号输入端口,DOUT为TTL/CMOS电平输出口。EN为使能输入端,通过使能模块控制整个芯片的工作与否。此外还含有温控模块,在高温下关断芯片,起到过热保护的作用。

  2 电路设计

  根据RS 422通信规范的描述,数据发送端使用2根信号线发送同一信号(2根线的极性相反),在接收端对这两根线上的电压信号相减得到实际信号。逻辑"1"以两线间的电压差为+(2~6 V)表示,逻辑"0"以两线间的电压差为-(2~6 V)表示。

  

  

  因此,发送器的目的就是要接收TTL/CMOS信号并把他转换为一对符合要求的差分信号,而接收器则与之相反。

  2.1发送器电路的设计

  发送器电路的设计有2种方法,一种不限摆率,发送数据速度可达10 Mb/s,但受信号在传输线上的反射(re-flection)、电磁干扰(electron magnet interference)的影响,传输距离较短;另一种采取限摆率技术,通过降低数据传送速度达到长距离传输的目的[2]。本文采取第一种方法。

  在CMOS工艺下,这种电路很容易实现,关键是选择具有合适尺寸的电路使其符合输出电流及功率要求。如图2所示为本文设计的电路图,电路要求是输出电平同TTL电平的兼容,所以输功率管采用的都是NMOS管。

  图2中DIN为数据输入端,EN为使能端,EN为高电平时电路工作。当DIN为高时,N0及N3导通而N1,N2截止,T1输出高电平而T2输出低电平。反之,若DIN为低时,N0及N3截止而N1,N2导通。这样,逻辑控制电路便将标准的TTL/CMOS信号分为2路大小相等,相位相反的差分信号T1和T2。为提供合适的驱动电流,输出管采用较大的尺寸。

  

  

  2.2接收器电路设计

  接收电路接收RS 422的标准差分信号并将其转化为CMOs/TTL电平,其核心电路为一比较器[3],主要功能是完成差分信号R1,R2的比较,若R1>R2,则输出高电平1,若R1

  如图3所示,P14~P16与N14,N15构成启动电路,P12,P13与N12,N13,R0构成偏置电路,P0~P6与。N0~N5为比较电路,该比较器利用内部正反馈实现迟滞电压控制[4],以防止受噪声干扰造成输出端的频繁跳变。迟滞电压可通过调节N0,N1,N2,N3的宽长比来实现。以N1,N2支路为例,阐述阈值电压的推导:当R1为高,R2为低时,P1及N1,N2支路导通:R2不断降低,与R1差值达到VTRP输出跳变:

  

  

  本文选择100 mV的迟滞电压,有效保证了系统的稳定性。由比较器输出的电压,经过施密特触发器及反相器整形后,成为标准的方波信号输出。

  2.3过温保护电路的设计

  过温保护电路如图4所示。

  

  

  电路中使用与发送电路中结构相同的迟滞比较器,设置了95℃和135℃两个温度跳转点,消除了热振荡现象。

  温度保护电路的工作原理如下:N5,N6,P2,P3,P4, Q3,Q4及R4,R3,R1构成基准发生电路,Y为基准电压输出点。由于共源共栅器件的作用,N5,N6源端电位近似相等,可得:

  其中n为Q4,Q3发射极面积之比,取R2=R3,则:

  基准电压[5]:

  通过调节R2与R1的比值使基准电压具有零温度系数,调节R4的值使输出合适的基准电压值。

  X点电压大约为3VBE,由于VBE是一个具有负温度系数的量,因此随温度的上升而下降。常温时,X点电位高于Y点电位,OUT端输出高电平,芯片正常工作。当温度上升至135℃时,X点电位低于Y点电位,比较器输出低电平,芯片关断。当芯片温度再次下降,低到95℃时,比较器再次翻转,芯片恢复正常工作。

  3 仿真结果

  3.1发送电路的仿真

  波形从上至下依次为:使能信号EN、输入波形、TX1、TX2、负载电阻电流。从图5中可以看出,发送器电路能够将一路CMOS信号转换为一对大小相等、方向相反的差分信号。在带100 Ω负载时,输出高电平为3 V,低电平0.3 v,负载电流27 mA,延迟9 ns上升时间4 ns,下降时间5 ns。使能信号EN为低时,电路不工作。

  

  

  3.2接收电路的仿真

  图6给出了接收电路的仿真情况,他能够将差分信号转换为标准CMOS电平,延迟大约为2 ns,上升约为0.5 ns,下降时间约为1 ns,迟滞电压约为1 00 mV。

  

  

  3.3过温保护模块的仿真

  对温度保护电路在0~140℃范围内进行扫描可得如上曲线,当芯片温度上升至大约在135℃时,温度保护模块输出低电平,关断芯片。当芯片温度下降至95℃时,温度保护模块输出电平跳变,芯片恢复正常工作。

  4 版图设计

  (1)为了防止电阻寄生的PN结正向导通,图4比较电路中R1,R2,R3,R4不能选取有源区电阻,只能选取多晶硅电阻。绘制时要注意匹配,如采用1∶2∶4的匹配方式。为了保证所有电阻所处的光刻环境一样,还在电阻阵列2边增加了dummy电阻。

  (2)对称性设计:电路中所有对称的MOS管及PNP管都要注意匹配,绘制版图时,可以把一个大的MOS管分成若干小管,采用共质心对称的方式以避免工艺的横向偏差和纵向偏差的影响,并添加dummy管。对于PNP管,如发射极面积比为1∶8的Q4和Q3,可采用1∶8的排列方式,即将Q3分成8个相同的PNP管,对称排列在Q4周围。

  (3)ES[)设计:ESD不仅仅要在放在I/O PAD旁,VDD及GND之间的ESD保护同样要引起高度注意,这可以通过添加sLtpply clamp电路实现。ESD器可采用LVTSCR结构以获得更加稳定的性能。

  (4)输山功率管设计:对于驱动器部分的输山火功率管,采用又指晶体管的设计方式,以减少漏源结面积和栅电阻。

  (5)保护环设计:为保护一些结构,要在适当的电路外围添加保护环。本芯片采用P衬底N阱工艺,有2种保护环,N阱的周围应该加吸收少子电子的N型保护环(nt-ap),ntap环接VDD,隔离衬底噪声;P衬底的周围应该加吸收少子空穴的P型保护环(ptap),ptap环接gnd,吸收衬底噪声。而且双环对少子的吸收效果比单环好。添加保护环可有效防止闩锁效应的发生。由于电路中功率管宽长比较大,其上的电流及消耗的功率也较大,容易干扰其他电路,因此需要在功率管及附近的电路的周围分别都添加保护环。

  5 结 语

  设计了一款适用于RS 422通信协议的接口芯片,他具有高传输速率、大驱动电流、低静态关断电流的特点,且具有多种保护电路,能抵抗恶劣环境,可广泛用于各类数据通信领域。

 

关键字:RS  基准电压  接收电路  摆率  比较电路  负载电阻  方波信号  电阻阵列  负温度系

来源: 时间: 引用地址:http://www.eeworld.com.cn/gykz/2008/0401/article_722.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:MAX4145在伪随机码产生电路中的应用
下一篇:CAN技术工程机械控制领域的应用

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

赛普拉斯的RSDB技术将实现智能手机屏幕的镜像功能

嵌入式解决方案供应商赛普拉斯半导体公司(纳斯达克代码:CY)日前宣布,旗下的Wi-Fi®和蓝牙® combo(组合)解决方案被应用于先锋公司(Pioneer)旗舰产品——内置式导航AV接收器中。该解决方案使乘客能够通过Apple CarPlay™或Android Auto™功能在汽车屏幕上显示和使用手机应用,通过智能手机的语音识别功能来搜索信息或回复短信。赛普拉斯的Wi-Fi和蓝牙组合解决方案采用了实时同步双频带(RSDB)技术,因此Apple CarPlay和Android Auto可以同时运行,不会因为频段之间的实时切换而造成性能下降。 先锋公司消费类汽车电子业务策划部总经理Takashi Miyake表示: “人们
发表于 2018-07-19 10:42:07
赛普拉斯的RSDB技术将实现智能手机屏幕的镜像功能

浅谈:责任敏感安全模型RSS

取决于训练时所用数据的质量,我们并不能简单的以一千万英里或者两千万英里来划定其数据质量的界限;最后,人工智能算法本身无法被正式验证,它仅限于统计学论据。因此,如果让人工智能去做规划,会带来两个直接的影响,一是行动过于保守,导致自动驾驶汽车无法从一地到达另一地;第二,需要大量的计算,这意味着需要使用运算速度为100 TOPS的昂贵硬件。而这样的自动驾驶汽车难以实现量产,因为普通大众根本负担不起。 RSS,验证自动驾驶安全性的全新选项英特尔和其子公司Mobileye发现,人类在安全驾驶上的本能概念和想法其实非常有效,基本上可以保障人类在各种驾驶情况下的安全性。因此,英特尔与Mobileye从原生的角度切入,把人类关于安全驾驶的概念
发表于 2018-07-16 15:24:42

RSS模型部署自动驾驶生态系统

当今社会对自动驾驶汽车的接受程度依赖于一个最重要的因素:技术开发者衡量风险,确保安全的能力。但是,绝对的安全并不存在。Mobileye 提出了 RSS(Responsibility Sensitive Safety)模型,其目标是通过一些数学公式从理论上来保证自动驾驶汽车的安全行驶,并通过形式化以下人类驾驶中比较具有主观性的几个常识确保自动驾驶汽车永远不会主动导致事故发生。百度宣布与英特尔子公司Mobileye展开合作,计划在其Apollo开源项目及Apollo Pilot商用项目中部署Mobileye的责任敏感安全(RSS)模型。此外,百度还计划采用Mobileye的环绕式计算机视觉工具作为其视觉感知解决方案,该方案还将被整合
发表于 2018-07-05 10:02:51

安森美半导体NCV-RSL10系统单芯片 带来汽车行业最低功耗蓝牙Soc

NCV-RSL10是通过蓝牙5认证并符合车规的系统单芯片(SoC),具有极高的安全性和可靠性,用于汽车无匙进入、信息娱乐控制、主动安全和自动驾驶等应用,为汽车行业带来行业最低功耗。蓝牙低功耗(BLE)的优势蓝牙低功耗具有更高能效、易于与智能手机互联、无需线束等优势。传统汽车模块之间使用线缆连接,增加了设计复杂度、车辆重量及成本,限制了传感器位置。蓝牙低功耗技术工作于2.4 GHz全球通用的频带,无需针对特定地域定制,无线缆限制,降低了设计复杂度,减少磨损,增加可靠性,并提高燃油能效。NCV-RSL10支持蓝牙低功耗,结合智能手机可代替钥匙解锁,实现无匙进入,还可控制信息娱乐系统,改变和调整媒体设置与体验。在主动安全方面,可用
发表于 2018-07-04 18:59:48
安森美半导体NCV-RSL10系统单芯片 带来汽车行业最低功耗蓝牙Soc

行业最低功耗蓝牙SoC NCV-RSL10增强您的汽车设计

NCV-RSL10是通过蓝牙5认证并符合车规的系统单芯片(SoC),具有极高的安全性和可靠性,用于汽车无匙进入、信息娱乐控制、主动安全和自动驾驶等应用,为汽车行业带来行业最低功耗。蓝牙低功耗(BLE)的优势蓝牙低功耗具有更高能效、易于与智能手机互联、无需线束等优势。传统汽车模块之间使用线缆连接,增加了设计复杂度、车辆重量及成本,限制了传感器位置。蓝牙低功耗技术工作于2.4 GHz全球通用的频带,无需针对特定地域定制,无线缆限制,降低了设计复杂度,减少磨损,增加可靠性,并提高燃油能效。NCV-RSL10支持蓝牙低功耗,结合智能手机可代替钥匙解锁,实现无匙进入,还可控制信息娱乐系统,改变和调整媒体设置与体验。在主动安全方面,可用
发表于 2018-07-03 19:20:33
行业最低功耗蓝牙SoC NCV-RSL10增强您的汽车设计

增强您汽车设计的低功耗蓝牙设备SoC NCV-RSL10

 蓝牙低功耗BLE(Bluetooth Low Energy)技术,也称为Bluetooth® Smart,从蓝牙V4.0开始作为核心规范的一部分,顾名思义,它可以满足小型电池供电的设备进行低功耗无线连接的要求,并大大延长电池寿命。主要应用包括:定位标签,资产跟踪,运动及健身传感器,医疗传感器,智能手表,遥控器,玩具等。NCV-RSL10是通过蓝牙5认证并符合车规的系统单芯片(SoC),具有极高的安全性和可靠性,用于汽车无匙进入、信息娱乐控制、主动安全和自动驾驶等应用,为汽车行业带来行业最低功耗。 蓝牙低功耗(BLE)的优势 蓝牙低功耗具有更高能效、易于与智能手机互联、无需线束等优势。 
发表于 2018-07-03 14:13:15
增强您汽车设计的低功耗蓝牙设备SoC NCV-RSL10

小广播

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2018 EEWORLD.com.cn, Inc. All rights reserved