datasheet

基于DSP的电子节气门PID控制

2008-04-01来源: 时间: 关键字:PID控制  电子节气门  DSP  节气门体  开度  功率驱动  时间常数  最佳工况  

  一、引言

  随着现代电子技术的飞速发展,特别是微机技术在汽车上的广泛应用,使得汽车的内涵和功能不断拓展和延伸,汽车电子化正逐渐成为现代汽车的基本特征。节气门是汽车发动机的重要控制部件。为了提高汽车行驶的动力性、平稳性及经济性,并减少排放污染,世界各大汽车制造商推出了各种控制特性良好的电子节气门及其相应的电子控制系统,组成电子节气门控制系统(ETCS)。采用电子节气门控制系统,使节气门开度得到精确控制,不但可以提高燃油经济性,减少排放,同时,系统响应迅速,可获得满意的操控性能;另一方面,可实现速控制、巡航控制和车辆稳定控制等的集成,简化了控制系统结构。现在,电子节气门控制系统已成为发动机完全电控管理系统的一个重要模块。由于ETCS的优越性,目前,世界上越来越多的大型汽车制造公司开始采用ETCS,传统机械式节气门面临着被电子节气门所取代的趋势。

  在电子节气门这种柔性连接方式中,油门踏板与节气门之间不再有机械连接。节气门的实际开度由车载电控系统根据当时的汽车行驶状况并考虑发动机特性确定,从而保证发动机运行于最佳工况。本设计进行了电子节气门控制系统的电控单元开发、传感器信号处理电路及执行器功率驱动电路的硬件电路设计,并进行了PID控制试验。

  二、系统组成

  电子节气门控制系统如图1所示,包括:节气门体、加速踏板位置传感器、DSP(Digital Signal Processor)开发板、信号处理电路、功率驱动电路及微机监控系统几个部分。节气门体包括:直流电机、节气门开度传感器及机械装置,它们被封装为一体。通过ECU驱动直流电机,完成节气门开度调整;节气门开度信号通过节气门体内部的一对高精度节气门开度传感器获取当前开度下相应的电压反馈值,该反馈值与节气门打开角度成线性变化。利用这两路反馈信号,构建闭环控制系统。加速踏板带动一个位置传感器,将加速踏板位置信号转变为电压信号传到ECU,其作用相当于一个反映驾驶员操纵意图的传感器,提供节气门开度的参考信号。

  

  

  当驾驶员踩下加速踏板时,加速踏板位置信号经过模拟信号采样处理电路,由DSP进行采集、处理及判断驾驶员的驾车意图;同时参考发动机的转速传感器、进气压力传感器及其它与车辆行驶工况相关的传感器信号进行综合分析计算,确定一个期望的节气门开度值;并将期望值与当前反馈回来的节气门开度值进行比较,确定控制信号,发出脉宽调制信号,经过功率放大电路驱动执行器,实时调整占空比,实现各项控制功能。最后驱动电机使节气门移动到一个与期望的节气门开度值相对应的位置。

  (一)电子节气门控制系统的核心DSP56F807

  控制单元DSP处理输入信号,计算和输出控制信号是整个电子节气门控制系统的核心。电子节气门控制系统要求电控单元抗干扰能力强、可靠性好、功能强和运算速度高。针对本系统,选择了Freescale公司DSP56F807进行系统开发。16位DSP56F807 在硬件设计上采取了一些独特的设计,以求最快的运算速度。DSP56800系列数字信号处理器具有很丰富的I/O口和多种外围配置。在单一的 DSP56F807芯片上集成了14个专用的和18个复用的通用输入/输出通道GPIO、2个异步串行通信模块SCI、1个同步串行外设模块SPI、1个控制系统局域网模块CAN2.0、4个4通道的12-bitADC,共16路模拟量输入通道、2个6通道用于各类电机控制的脉冲宽度调制PWM模块、4个 16位四定时/计数器Timer、外部存储器接口、片内电源监视器及看门狗(watchdog)、JTAG/OnCE实时调试接口等多路外设模块。实现了完全的单片化,可以满足电子节气门控制系统需要。

  (二)驱动电路设计

  在电路设计中加入了大量的滤波和抗干扰元件,采用RC滤波、光耦隔离、电压跟随器和比较器等优化组合来提高电路的可靠性和抗干扰性。执行器功率驱动电路的功用就是将DSP输出的数字信号转换成可以驱动执行元件的输出信号。该模块是电控系统执行机构正常工作的保证,驱动模块的好坏与系统的稳定性和可靠性有密切的联系。

  要控制节气门的开度,就需要控制其直流电机的输出扭矩,该扭矩与电机线圈中的电流成正比。如图2所示,直流电机PWM功率驱动电路:DSP产生PWM信号通过光电耦合器控制功率MOS管来完成对直流电机电源的高频开闭,最终控制节气门的开度。由于节气门片需要正反两个方向转动,所以需要搭建一个H桥电路来满足对直流电机双向控制的需求。光电耦合器实现上、下级之间的电器隔离,防止有高电压大电流进入主控电路,干扰DSP的正常工作。4个二极管具有消除电压尖峰的作用。

  

  

  三、PID控制原理

  由于节气门体中存在非线性弹簧、粘性摩擦和滑动摩擦、进气扰动及齿隙冲击等,导致了控制对象为一严重非线性系统,控制难度较高。PID控制不需要测量系统的模型,容易实现,所以本文选择了使用PID控制策略进行控制。PID控制将偏差的比例P、积分I和微分D通过线性组合构成控制量,对被控对象进行控制,故称PID控制。

  PID控制系统是一种线性控制系统,如图3所示,控制偏差e(t)为目标值与实际输出值之差:

  e(t)=r(t)-y(t)(1)

  PID控制规律为:

  式中:KP——比例系数;

  TI——积分时间常数;

  TD——微分时间常数。

  

  

  KP成比例地反映控制系统的偏差信号e(t),偏差一旦产生,控制系统立即产生控制作用以减小偏差。

  TI主要用于消除静差,提高系统的无差度,积分作用的强弱取决于积分时间常数TI,TI越大积分作用越弱,反之则越强。

  TD反应偏差信号的变化趋势(变化速率),并能在偏差信号变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调节周期。

  在计算机PID控制中,需使用数字PID控制,本文使用增量式PID控制算法,公式如下:

  △u(k)=KP[e(k)-e(k-1)]+KIe(k)+K

  D[e(k)-2e(k-1)+e(k-2)](3)

  u(k)=u(k-1)+△u(k)(4)

  式中:△u(k)——k时刻输出增量;

  KI——积分系数;

  KD——微分系数。

  数字PID控制是连续系统中技术最成熟应用最广泛的一种控制,不需了解被控对象的数学模型,只要根据经验进行调整参数的在线整定,即可获得满意的效果,特别适用于软件编程的方法实现PID控制,参数变化十分灵活。具有控制原理简单、实现容易及稳定性好等优点。

  由于节气门体中复位弹簧的作用,使节气门片的受力变得复杂,增加了控制的难度。节气门片向不同方向转动时其受力不同,转动范围大小也不同,因此,正、反转模型也就不同。于是需要设计正转和反转两组PID控制,其控制参数和流程均不同。程序需根据控制输出量值的正负,判断进入正转控制流程还是反转控制流程,并完成控制流程的非线性切换。

  四、节气门控制实验

  节气门开度控制实验中,节气门位置传感器的电压为反馈量,PWM的占空比信号为控制输出量。实验中由PC机监控系统向DSP发送目标开度值和PID控制参数,DSP根据控制参数和节气门位置信号计算并输出PWM信号,电机执行命令,控制电子节气门完成动作;同时DSP向PC机监控系统传送控制过程,PC机记录并显示实际控制效果,根据控制效果不断调整PID控制参数,最终达到最佳控制。图4记载了试验中进行的阶跃响应测试,参数KP=65,KI=125, KD="10",电子节气门从初始值1200mV到目标值2000mV的阶跃变化情况。从系统的阶跃响应曲线可知节气门上升时间短且稳态跟踪误差小,满足系统响应和控制精度要求。

  

  

  五、结论

  试验表明,该控制系统具有性能稳定、抗干扰能力强和可靠性高等优点,取得了十分满意的控制效果,故该节气门控制系统具有很高的应用价值。

  下一步将电子节气门控制系统装车,与发动机ECU整合,进行发动机实车试验,需要对电子节气门的控制特性进行深入研究,结合更有针对性的非线性智能控制方法,进一步提高发动机控制效果。

 

关键字:PID控制  电子节气门  DSP  节气门体  开度  功率驱动  时间常数  最佳工况  

编辑:ssb 引用地址:http://www.eeworld.com.cn/gykz/2008/0401/article_718.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:基于ARM和加速度传感器的电子画笔设计
下一篇:智能型电源模块加速三相电器电机驱动器开发

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

用单片机玩PID控制—从理想PID控制至先进PID控制_14

3.6模糊自适应PID控制模糊自适应PID控制的原理如图1所示,模糊自适应PID控制器大致的设计过程是:1将偏差和偏差变化率从物理量变换到论域,2确定偏差e、偏差变化率ec、kp、ki和kd的的隶属度函数,如图2所示,3确定模糊规则,4根据模糊规则和偏差e、偏差变化率ec的隶属度函数,计算出Δkp、Δki和Δkd的查询表,Δkp、Δki和Δkd的输出曲面如图2所示,5实时查询,并将Δkp、Δki和Δkd从论域转换到物理量,6Δkp、Δki和Δkd与基础kp'、ki'和kd'相加,获得实际kp、ki和kd值,对一个大纯滞后系统采用模糊自适应PID控制的效果,如图3所示。需要指出,当e和ec的论域是连续量时
发表于 2018-10-20
用单片机玩PID控制—从理想PID控制至先进PID控制_14

用单片机玩PID控制—从理想PID控制至先进PID控制_12

3.4.2模式识别法模式识别法PID参数自整定,它是通过识别系统暂态响应过程中峰值、谷值和振荡周期等数据,然后计算获得PID参数的一种方法,我做的模式识别法PID参数自整定,其效果如图1、图2和图3所示,从图中可以看出,效果还算马马虎虎,由于做这个实验非常耗时,所以没做到理想状态,如果以后写一篇“用MATLAB玩控制”的专题,则会给出一个完美的例子,此时,系统过渡过程的衰减比是4:1。一个商品化的带有模式识别法PID参数自整定的调节器,它实质上是一种专家系统,而我做的连“砖家系统”都算不上,顶多算个“本(笨)人系统”把。
发表于 2018-10-20
用单片机玩PID控制—从理想PID控制至先进PID控制_12

用单片机玩PID控制—从理想PID控制至先进PID控制_11

3.4PID参数自整定工程控制中,PID参数整定是一桩耗时又费力的活,即使你富有经验,那也不容易搞定,如果能自动整定PID参数,显然是好事一件,可以极大降低工程人员的劳动强度,下面介绍两种自动整定PID参数方法。3.4.1继电反馈法PID自整定继电反馈法PID自整定原理如图1所示,图中的继电特性环节,迫使系统振荡,根据振荡的频率及继电环节的增益,可以计算获得PID参数,如果继电环节有滞环,可以一定程度上克服干扰的影响,总的来说,继电反馈法是一种简单而靠谱的自动整定PID方法,整定效果如图2所示,从图中可以看出控制效果不赖。
发表于 2018-10-20
用单片机玩PID控制—从理想PID控制至先进PID控制_11

用单片机玩PID控制—从理想PID控制至先进PID控制_10

3.3Smith预估补偿控制许多温度控制系统,尤其是电加热温度控制系统,有很大的纯滞后时间,对这类大纯滞后系统,一种经典的方法是用Smith预估补偿控制,但原型的Smith预估补偿控制有两个缺点,1是对负荷变化无效,2是要求预估模型精确,显然,负荷变化无法避免,预估模型无法精确求得,况且,被控对象可能是时变的或者有非线性,如此,两者皆不可能满足,而各种改进型的Smith预估补偿控制效果更好,我们这里采用增益自适应补偿方案,其原理如图1所示,在过程控制中,通常可以用一个一阶系统加一个纯滞后环节逼近一个任意系统,增益自适应补偿方案中,一阶系统和微分作用的数值计算,前面已经介绍过,纯滞后环节可以用一个队列来模拟,为了减轻51单片机的计算
发表于 2018-10-20
用单片机玩PID控制—从理想PID控制至先进PID控制_10

用单片机玩PID控制—从理想PID控制至先进PID控制_13

3.5复合模糊控制复合模糊控制是指,在大偏差时用模糊控制,而在小偏差时用PID控制,从而可以克服模糊控制有偏差的缺点,其原理如图1所示。3.5.1模糊控制模糊控制工作原理如图2所示,模糊控制器的大致设计流程是:1确定输入语言变量,通常是偏差e和偏差变化率ec,确定输出语言变量,一般有两种情况:1)是控制输出,2)是PID参数,前者情况下就是模糊控制,后者的情况下就是模糊自适应PID控制,2确定每个语言变量的一个模糊子集,模糊子集中的元素被称为语言值,常见的语言值有:负大、负中、负小、零、正小、正中、正大等,3确定每个语言值的论域,论域可以是离散的,也可以是连续的,4确定每个语言值与论域之间的隶属度,在离散的情况下,用表格表示,如图
发表于 2018-10-20
用单片机玩PID控制—从理想PID控制至先进PID控制_13

用单片机玩PID控制—从理想PID控制至先进PID控制_8

3.2工程PID控制在理想PID算法的情况下,1如果有干扰,输出瞬间波动很大,2如果偏差e出现跳变,微分作用仅仅在一个周期内有效,这个也不那么合理,为此,需要改进。3.2.1工程PID控制1上述的两个缺点,都是由理想微分作用引起的,一个解决办法是对偏差进行滤波处理。3.2.1.1滤波滤波有很多种方法,常见的有取平均值、低通滤波等,而一阶系统环节的传递函数为:G(s)=K/(T*s+1)当K取1时,即为低通滤波。一阶系统环节的数值计算方法有很多种,常见的有:1将微分方程化为差分方程,然后进行数值,2用离散相似法求取,这里给出后者的计算公式:x(k+1)=exp(-Ts/T)*x(k)+K*(1-exp(-Ts/T))*u(k
发表于 2018-10-20
用单片机玩PID控制—从理想PID控制至先进PID控制_8

小广播

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2018 EEWORLD.com.cn, Inc. All rights reserved
pt type="text/javascript" src="//v3.jiathis.com/code/jia.js?uid=2113614" charset="utf-8">