datasheet

MOS管工作动画原理图详解

2019-05-14来源: EEWORLD关键字:MOS管

MOS管工作原理动画

 

绝缘型场效应管的栅极与源极、栅极和漏极之间均采用SiO2绝缘层隔离,因此而得名。又因栅极为金属铝,故又称为MOS管。它的栅极-源极之间的电阻比结型场效应管大得多,可达1010Ω以上,还因为它比结型场效应管温度稳定性好、集成化时温度简单,而广泛应用于大规模和超大规模集成电路中。

 

https://mmbiz.qpic.cn/mmbiz_gif/ewiaKibzhXCHNXuYl4T47U7QEXQPy6FTLR2YfST1p5AEcYtqvez06nDH0BicMdYtlJRCic7ga3eic9pviazGRkS85S6w/640?wx_fmt=gif

 

与结型场效应管相同,MOS管工作原理动画示意图也有N沟道和P沟道两类,但每一类又分为增强型和耗尽型两种,因此MOS管的四种类型为:N沟道增强型管、N沟道耗尽型管、P沟道增强型管、P沟道耗尽型管。凡栅极-源极电压UGS为零时漏极电流也为零的管子均属于增强型管,凡栅极-源极电压UGS为零时漏极电流不为零的管子均属于耗尽型管。

 

https://mmbiz.qpic.cn/mmbiz_gif/ewiaKibzhXCHNXuYl4T47U7QEXQPy6FTLRiaACB2EEAK4fV4zUiavsvbnxQ2nKCicdat26FFfs8Vj1I2eFDiamIHZZoQ/640?wx_fmt=gif

 

根据导电方式的不同,MOSFET又分增强型、耗尽型。所谓增强型是指:当VGS=0时管子是呈截止状态,加上正确的VGS后,多数载流子被吸引到栅极,从而“增强”了该区域的载流子,形成导电沟道。

 

https://mmbiz.qpic.cn/mmbiz_gif/ewiaKibzhXCHNXuYl4T47U7QEXQPy6FTLRr6RU8kU7UTLOloCQabfN7rbqVMlHJJiaeWUShB0sEwqs28cQjKp8TZw/640?wx_fmt=gif

 

N沟道增强型MOSFET基本上是一种左右对称的拓扑结构,它是在P型半导体上生成一层SiO2 薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极,一个是漏极D,一个是源极S。在源极和漏极之间的绝缘层上镀一层金属铝作为栅极G。

 

当VGS=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压不会在D、S间形成电流。

 

当栅极加有电压时,若0<VGS<VGS(th)时,通过栅极和衬底间形成的电容电场作用,将靠近栅极下方的P型半导体中的多子空穴向下方排斥,出现了一薄层负离子的耗尽层;同时将吸引其中的少子向表层运动,但数量有限,不足以形成导电沟道,将漏极和源极沟通,所以仍然不足以形成漏极电流ID。

 

进一步增加VGS,当VGS>VGS(th)时( VGS(th)称为开启电压),由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。如果此时加有漏源电压,就可以形成漏极电流ID。在栅极下方形成的导电沟道中的电子,因与P型半导体的载流子空穴极性相反,故称为反型层。随着VGS的继续增加,ID将不断增加。在VGS=0V时ID=0,只有当VGS>VGS(th)后才会出现漏极电流,所以,这种MOS管称为增强型MOS管。

 

VGS对漏极电流的控制关系可用iD=f(VGS(th))|VDS=const这一曲线描述,称为转移特性曲线,MOS管工作原理动画见图1.。

 

转移特性曲线的斜率gm的大小反映了栅源电压对漏极电流的控制作用。gm的量纲为mA/V,所以gm也称为跨导。跨导。

 

https://mmbiz.qpic.cn/mmbiz_jpg/ewiaKibzhXCHNXuYl4T47U7QEXQPy6FTLRgR86TzQHHoErj5pXRUX3a8ju9uLjQ8zrqGCLFzWocaySygVhWboxDw/640?wx_fmt=jpeg

 

图1. 转移特性曲线

 

MOS管工作原理动画2—54(a)为N沟道增强型MOS管工作原理动画图,其电路符号如图2—54(b)所示。它是用一块掺杂浓度较低的P型硅片作为衬底,利用扩散工艺在衬底上扩散两个高掺杂浓度的N型区(用N+表示),并在此N型区上引出两个欧姆接触电极,分别称为源极(用S表示)和漏极(用D表示)。在源区、漏区之间的衬底表面覆盖一层二氧化硅(SiO2)绝缘层,在此绝缘层上沉积出金属铝层并引出电极作为栅极(用G表示)。从衬底引出一个欧姆接触电极称为衬底电极(用B表示)。由于栅极与其它电极之间是相互绝缘的,所以称它为绝缘栅型场效应管。MOS管工作原理动画图2—54(a)中的L为沟道长度,W为沟道宽度。

 

https://mmbiz.qpic.cn/mmbiz_jpg/ewiaKibzhXCHNXuYl4T47U7QEXQPy6FTLRSPmAhsnyUB6XO0HKBbEHFQ2kj5IsVEHD9wMm8Llfwtg15pu5NUEQtQ/640?wx_fmt=jpeg

 

图2—54所示的MOSFET,当栅极G和源极S之间不加任何电压,即UGS=0

 

时,由于漏极和源极两个N+型区之间隔有P型衬底,相当于两个背靠背连接的PN结,它们之间的电阻高达1012W的数量级,也就是说D、S之间不具备导电的沟道,所以无论漏、源极之间加何种极性的电压,都不会产生漏极电流ID。

 

当将衬底B与源极S短接,在栅极G和源极S之间加正电压,即UGS﹥0时,MOS管工作原理动画图2—55(a)所示,则在栅极与衬底之间产生一个由栅极指向衬底的电场。在这个电场的作用下,P衬底表面附近的空穴受到排斥将向下方运动,电子受电场的吸引向衬底表面运动,与衬底表面的空穴复合,形成了一层耗尽层。如果进一步提高UGS电压,使UGS达到某一电压UT时,P衬底表面层中空穴全部被排斥和耗尽,而自由电子大量地被吸引到表面层,由量变到质变,使表面层变成了自由电子为多子的N型层,称为“反型层”,MOS管工作原理动画图2—55(b)所示。反型层将漏极D和源极S两个N+型区相连通,构成了漏、源极之间的N型导电沟道。把开始形成导电沟道所需的UGS值称为阈值电压或开启电压,用UT表示。显然,只有UGS﹥UT时才有沟道,而且UGS越大,沟道越厚,沟道的导通电阻越小,导电能力越强。这就是为什么把它称为增强型的缘故。

 

在UGS﹥UT的条件下,如果在漏极D和源极S之间加上正电压UDS,导电沟道就会有电流流通。漏极电流由漏区流向源区,因为沟道有一定的电阻,所以沿着沟道产生电压降,使沟道各点的电位沿沟道由漏区到源区逐渐减小,靠近漏区一端的电压UGD最小,其值为UGD=UGS-UDS,相应的沟道最薄;靠近源区一端的电压最大,等于UGS,相应的沟道最厚。这样就使得沟道厚度不再是均匀的,整个沟道呈倾斜状。随着UDS的增大,靠近漏区一端的沟道越来越薄。

 

https://mmbiz.qpic.cn/mmbiz_jpg/ewiaKibzhXCHNXuYl4T47U7QEXQPy6FTLR4xwE8m5ibIpaas9rzFlKMavaBG2zSD9KP27EnRQtueSjnU6yFZiceZIQ/640?wx_fmt=jpeg

 

https://mmbiz.qpic.cn/mmbiz_jpg/ewiaKibzhXCHNXuYl4T47U7QEXQPy6FTLRQUxXr4CVUic6zPc0tBicp69K2kfHIC7BjDVKJyFtkuyKyt7qxwzicOaPA/640?wx_fmt=jpeg

 

当UDS增大到某一临界值,使UGD≤UT时,漏端的沟道消失,只剩下耗尽层,把这种情况称为沟道“预夹断”,MOS管工作原理动画图2—56(a)所示。继续增大UDS(即UDS>UGS-UT),夹断点向源极方向移动,MOS管工作原理动画图2—56(b)所示。尽管夹断点在移动,但沟道区(源极S到夹断点)的电压降保持不变,仍等于UGS-UT。因此,UDS多余部分电压[UDS-(UGS-UT)]全部降到夹断区上,在夹断区内形成较强的电场。这时电子沿沟道从源极流向夹断区,当电子到达夹断区边缘时,受夹断区强电场的作用,会很快的漂移到漏极。

 

耗尽型。耗尽型是指,当VGS=0时即形成沟道,加上正确的VGS时,能使多数载流子流出沟道,因而“耗尽”了载流子,使管子转向截止。

 

耗尽型MOS场效应管,是在制造过程中,预先在SiO2绝缘层中掺入大量的正离子,因此,在UGS=0时,这些正离子产生的电场也能在P型衬底中“感应”出足够的电子,形成N型导电沟道。

 

当UDS>0时,将产生较大的漏极电流ID。如果使UGS<0,则它将削弱正离子所形成的电场,使N沟道变窄,从而使ID减小。当UGS更负,达到某一数值时沟道消失,ID=0。使ID=0的UGS我们也称为夹断电压,仍用UP表示。UGS

 

N沟道耗尽型MOSFET的结构与增强型MOSFET结构类似,只有一点不同,就是N沟道耗尽型MOSFET在栅极电压uGS=0时,沟道已经存在。该N沟道是在制造过程中应用离子注入法预先在衬底的表面,在D、S之间制造的,称之为初始沟道。N沟道耗尽型MOSFET的结构和符号如MOS管工作原理动画1.(a)所示,它是在栅极下方的SiO2绝缘层中掺入了大量的金属正离子。所以当VGS=0时,这些正离子已经感应出反型层,形成了沟道。于是,只要有漏源电压,就有漏极电流存在。当VGS>0时,将使ID进一步增加。VGS<0时,随着VGS的减小漏极电流逐渐减小,直至ID=0。对应ID=0的VGS称为夹断电压,用符号VGS(off)表示,有时也用VP表示。N沟道耗尽型MOSFET的转移特性曲线如图1.(b)所示。

 

https://mmbiz.qpic.cn/mmbiz_jpg/ewiaKibzhXCHNXuYl4T47U7QEXQPy6FTLRF8WdKnhvRR2FyOv1tSywOhia53PLo3hmic0tSE8QUvQS3gHkkc08Nqtw/640?wx_fmt=jpeg

 

图1. N沟道耗尽型MOSFET的结构和转移特性曲线

 

由于耗尽型MOSFET在uGS=0时,漏源之间的沟道已经存在,所以只要加上uDS,就有iD流通。如果增加正向栅压uGS,栅极与衬底之间的电场将使沟道中感应更多的电子,沟道变厚,沟道的电导增大。

 

如果在栅极加负电压(即uGS<0=,就会在相对应的衬底表面感应出正电荷,这些正电荷抵消N沟道中的电子,从而在衬底表面产生一个耗尽层,使沟道变窄,沟道电导减小。当负栅压增大到某一电压Up时,耗尽区扩展到整个沟道,沟道完全被夹断(耗尽),这时即使uDS仍存在,也不会产生漏极电流,即iD=0。UP称为夹断电压或阈值电压,其值通常在–1V–10V之间N沟道耗尽型MOSFET的输出特性曲线和转移特性曲线分别如图2—60(a)、(b)所示。

 

在可变电阻区内,iD与uDS、uGS的关系仍为

 

https://mmbiz.qpic.cn/mmbiz_jpg/ewiaKibzhXCHNXuYl4T47U7QEXQPy6FTLRs5fRzTn1u4RguKTnYQeia9TLkLls0oiadhoyib8VCPcsz2rClj6xOLalA/640?wx_fmt=jpeg

 

在恒流区,iD与uGS的关系仍满足式(2—81),即

 

https://mmbiz.qpic.cn/mmbiz_jpg/ewiaKibzhXCHNXuYl4T47U7QEXQPy6FTLRq9OpOd8Fe9YE04vbFHNyaQzlYBTVY5Ek3YlLDNQzicIxhBhoXD6OlQA/640?wx_fmt=jpeg

 

若考虑uDS的影响,iD可近似为

 

https://mmbiz.qpic.cn/mmbiz_jpg/ewiaKibzhXCHNXuYl4T47U7QEXQPy6FTLRReRQKahX8JG0WQGlVz6icrYc7dchcedwWHI96TBvjiatAUe9nvH7Hibtw/640?wx_fmt=jpeg

 

对耗尽型场效应管来说,式(2—84)也可表示为

 

https://mmbiz.qpic.cn/mmbiz_jpg/ewiaKibzhXCHNXuYl4T47U7QEXQPy6FTLRK0SNPLQ2VOauEsibOUZ7QyiafwEgdgfpgpiaQBVN4Zt09G49KU0yzVcew/640?wx_fmt=jpeg

 

式中,IDSS称为uGS=0时的饱和漏电流,其值为

 

https://mmbiz.qpic.cn/mmbiz_jpg/ewiaKibzhXCHNXuYl4T47U7QEXQPy6FTLRNsVaTdBGWMgzDoVjDHJU6a1EHoNSazx3xtfbVEbcHKicdNEuYOcnjyA/640?wx_fmt=jpeg

 

P沟道MOSFET的工作原理与N沟道MOSFET完全相同,只不过导电的载流子不同,供电电压极性不同而已。这如同双极型三极管有NPN型和PNP型一样。

 

https://mmbiz.qpic.cn/mmbiz_jpg/ewiaKibzhXCHNXuYl4T47U7QEXQPy6FTLRevRwhibN2SYicA5SdUD6QiahOiciajUHRW8JGt9UhclQbVf8eQiakVuPlthg/640?wx_fmt=jpeg

 

3 主要参数

 

(1) 直流参数

 

指耗尽型MOS夹断电压UGS=UGS(off) 、增强型MOS管开启电压UGS(th)、耗尽型场效应三极管的饱和漏极电流IDSS(UGS=0时所对应的漏极电流)、输入电阻RGS.

 

(2) 低频跨导gm

 

gm可以在转移特性曲线上求取,单位是mS(毫西门子)。

 

(3) 最大漏极电流IDM

 

 



关键字:MOS管

编辑:muyan 引用地址:http://www.eeworld.com.cn/dygl/ic461744.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:雅特生全新12kW电源模块以一敌四大幅降低所需成本
下一篇:CISSOID在PCIM 2019展示最新的高温栅极驱动器

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

技术文章—MOS管栅极驱动电阻该如何设计

MOS管的驱动对其工作效果起着决定性的作用。设计师既要考虑减少开关损耗,又要求驱动波形较好即振荡小、过冲小、EMI小。这两方面往往是互相矛盾的,需要寻求一个平衡点,即驱动电路的优化设计。驱动电路的优化设计包含两部分内容:一是最优的驱动电流、电压的波形;二是最优的驱动电压、电流的大小。在进行驱动电路优化设计之前,必须先清楚MOS管的模型、MOS管的开关过程、MOS管的栅极电荷以及MOS管的输入输出电容、跨接电容、等效电容等参数对驱动的影响。 MOS管的模型 MOS管的等效电路模型及寄生参数如图1所示。图1中各部分的物理意义为: (1)LG和LG代表封装端到实际的栅极线路的电感和电阻。 
发表于 2019-05-07
技术文章—MOS管栅极驱动电阻该如何设计

工程师必须掌握的MOS管驱动设计细节

一般认为MOSFET是电压驱动的,不需要驱动电流。然而,在MOS的G S两级之间有结电容存在,这个电容会让驱动MOS变的不那么简单。如果不考虑纹波和EMI等要求的话,MOS管开关速度越快越好,因为开关时间越短,开关损耗越小,而在开关电源中开关损耗占总损耗的很大一部分,因此MOS管驱动电路的好坏直接决定了电源的效率。对于一个MOS管,如果把GS之间的电压从0拉到管子的开启电压所用的时间越短,那么MOS管开启的速度就会越快。与此类似,如果把MOS管的GS电压从开启电压降到0V的时间越短,那么MOS管关断的速度也就越快由此我们可以知道,如果想在更短的时间内把GS电压拉高或者拉低,就要给MOS管栅极更大的瞬间驱动电流。大家常用的PWM芯片
发表于 2019-04-19
工程师必须掌握的MOS管驱动设计细节

技术文章—MOS管“炸”与“不炸”,关键就在这

我们知道开关电源中MOSFET、 IGBT是最核心也是最容易烧坏的器件。开关器件长期工作于高电压大电流状态,承受着很大的功耗,一但过压或过流就会导致功耗大增,晶圆结温急剧上升,如果散热不及时,就会导致器件损坏,甚至可能会伴随爆炸,非常危险。这里就衍生一个概念,安全工作区。 一、什么是安全工作区? 安全工作区:SOA(Safe operating area)是由一系列(电压,电流)坐标点形成的一个二维区域,开关器件正常工作时的电压和电流都不会超过该区域。简单的讲,只要器件工作在SOA区域内就是安全的,超过这个区域就存在危险。 二、SOA具体如何应用和测试呢? 开关器件的各项参数在数据手册中都
发表于 2019-04-08
技术文章—MOS管“炸”与“不炸”,关键就在这

MOS管工作动画原理图详解

绝缘型场效应管的栅极与源极、栅极和漏极之间均采用SiO2绝缘层隔离,因此而得名。又因栅极为金属铝,故又称为MOS管。它的栅极-源极之间的电阻比结型场效应管大得多,可达1010Ω以上,还因为它比结型场效应管温度稳定性好、集成化时温度简单,而广泛应用于大规模和超大规模集成电路中。与结型场效应管相同,MOS管工作原理动画示意图也有N沟道和P沟道两类,但每一类又分为增强型和耗尽型两种,因此MOS管的四种类型为:N沟道增强型管、N沟道耗尽型管、P沟道增强型管、P沟道耗尽型管。凡栅极-源极电压UGS为零时漏极电流也为零的管子均属于增强型管,凡栅极-源极电压UGS为零时漏极电流不为零的管子均属于耗尽型管。根据导电方式的不同,MOSFET又分
发表于 2019-03-19
MOS管工作动画原理图详解

电源设计经验之MOS管驱动电路篇

MOSFET因导通内阻低、开关速度快等优点被广泛应用于开关电源中。MOSFET的驱动常根据电源IC和MOSFET的参数选择合适的电路。下面一起探讨MOSFET用于开关电源的驱动电路。在使用MOSFET设计开关电源时,大部分人都会考虑MOSFET的导通电阻、最大电压、最大电流。但很多时候也仅仅考虑了这些因素,这样的电路也许可以正常工作,但并不是一个好的设计方案。更细致的,MOSFET还应考虑本身寄生的参数。对一个确定的MOSFET,其驱动电路,驱动脚输出的峰值电流,上升速率等,都会影响MOSFET的开关性能。当电源IC与MOS管选定之后,选择合适的驱动电路来连接电源IC与MOS管就显得尤其重要了。一个好的MOS
发表于 2018-04-04
电源设计经验之MOS管驱动电路篇

小广播

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD.com.cn, Inc. All rights reserved